1,189 research outputs found
High-contrast Imaging from Space: Speckle Nulling in a Low Aberration Regime
High-contrast imaging from space must overcome two major noise sources to
successfully detect a terrestrial planet angularly close to its parent star:
photon noise from diffracted star light, and speckle noise from star light
scattered by instrumentally-generated wavefront perturbation. Coronagraphs
tackle only the photon noise contribution by reducing diffracted star light at
the location of a planet. Speckle noise should be addressed with
adaptative-optics systems. Following the tracks of Malbet, Yu and Shao (1995),
we develop in this paper two analytical methods for wavefront sensing and
control that aims at creating dark holes, i.e. areas of the image plane cleared
out of speckles, assuming an ideal coronagraph and small aberrations. The first
method, speckle field nulling, is a fast FFT-based algorithm that requires the
deformable-mirror influence functions to have identical shapes. The second
method, speckle energy minimization, is more general and provides the optimal
deformable mirror shape via matrix inversion. With a NxN deformable mirror, the
size of matrix to be inverted is either N^2xN^2 in the general case, or only
NxN if influence functions can be written as the tensor product of two
one-dimensional functions. Moreover, speckle energy minimization makes it
possible to trade off some of the dark hole area against an improved contrast.
For both methods, complex wavefront aberrations (amplitude and phase) are
measured using just three images taken with the science camera (no dedicated
wavefront sensing channel is used), therefore there are no non-common path
errors. We assess the theoretical performance of both methods with numerical
simulations, and find that these speckle nulling techniques should be able to
improve the contrast by several orders of magnitude.Comment: 31 pages, 8 figures, 1 table. Accepted for publication in ApJ (should
appear in February 2006
The Compact UV Nucleus of M33
The most luminous X-ray source in the Local Group is associated with the
nucleus of M33. This source, M33 X-8, appears modulated by ~20% over a ~106 day
period, making it unlikely that the combined emission from unresolved sources
could explain the otherwise persistent ~1e39 erg/s X-ray flux (Dubus et al.
1997, Hernquist et al. 1991). We present here high resolution UV imaging of the
nucleus with the Planetary Camera of the HST undertaken in order to search for
the counterpart to X-8. The nucleus is bluer and more compact than at longer
wavelength images but it is still extended with half of its 3e38 erg/s UV
luminosity coming from the inner 0.14". We cannot distinguish between a
concentrated blue population and emission from a single object.Comment: 3 figures, accepted for publication in ApJ Letter
On the distance of PG 1553+11. A lineless BL Lac object active in the TeV band
Context: The redshift of PG 1553+11, a bright BL Lac object (V~14), is still
unknown. It has been recently observed in the TeV band, a fact that offers an
upper limit for the redshift z<0.4. Aims: We intend to provide a lower limit
for the distance of the object. Methods: We used a chi^2 procedure to constrain
the apparent magnitude of the host galaxy in archived HST images. Supposing
that the host galaxy is typical of BL Lac objects (M_{R} -22.8), a lower limit
to the distance can be obtained from the limit on the apparent magnitude of the
host galaxy. Results: Using the 3 sigma limit on the host galaxy magnitude, the
redshift is found to be greater or equal to 0.25. Conlusions: The redshift of
PG 1553+11 is probably in the range z=0.3-0.4, making this object the most
distant extragalactic source so far detected in the TeV energies. We suggest
that other bright BL Lac objects of unknown redshift and similar spectroscopic
characteristics may be interesting targets for TeV observations.Comment: Accepted for publication in A&A letters, 4 pages, 5 figure
HST/ACS Images of the GG Tauri Circumbinary Disk
Hubble Space Telescope Advanced Camera for Surveys images of the young binary
GG Tauri and its circumbinary disk in V and I bandpasses were obtained in 2002
and are the most detailed of this system to date. The confirm features
previously seen in the disk including: a "gap" apparently caused by shadowing
from circumstellar material; an asymmetrical distribution of light about the
line of sight on the near edge of the disk; enhanced brightness along the near
edge of the disk due to forward scattering; and a compact reflection nebula
near the secondary star. New features are seen in the ACS images: two short
filaments along the disk; localized but strong variations in disk intensity
("gaplets"); and a "spur" or filament extending from the reflection nebulosity
near the secondary. The back side of the disk is detected in the V band for the
first time. The disk appears redder than the combined light from the stars,
which may be explained by a varied distribution of grain sizes. The brightness
asymmetries along the disk suggest that it is asymmetrically illuminated by the
stars due to extinction by nonuniform circumstellar material or the illuminated
surface of the disk is warped by tidal effects (or perhaps both). Localized,
time-dependent brightness variations in the disk are also seen.Comment: 28 pages, 7 figures, accepted for publication in the Astronomical
Journa
HST and Spitzer Observations of the HD 207129 Debris Ring
A debris ring around the star HD 207129 (G0V; d = 16.0 pc) has been imaged in
scattered visible light with the ACS coronagraph on the Hubble Space Telescope
and in thermal emission using MIPS on the Spitzer Space Telescope at 70 microns
(resolved) and 160 microns (unresolved). Spitzer IRS (7-35 microns) and MIPS
(55-90 microns) spectrographs measured disk emission at >28 microns. In the HST
image the disk appears as a ~30 AU wide ring with a mean radius of ~163 AU and
is inclined by 60 degrees from pole-on. At 70 microns it appears partially
resolved and is elongated in the same direction and with nearly the same size
as seen with HST in scattered light. At 0.6 microns the ring shows no
significant brightness asymmetry, implying little or no forward scattering by
its constituent dust. With a mean surface brightness of V=23.7 mag per square
arcsec, it is the faintest disk imaged to date in scattered light.Comment: 28 pages, 8 figure
Harnessing Information Technology to Inform Patients Facing Routine Decisions: Cancer Screening as a Test Case
PURPOSE Technology could transform routine decision making by anticipating patients’ information needs, assessing where patients are with decisions and preferences, personalizing educational experiences, facilitating patient-clinician information exchange, and supporting follow-up. This study evaluated whether patients and clinicians will use such a decision module and its impact on care, using 3 cancer screening decisions as test cases. METHODS Twelve practices with 55,453 patients using a patient portal participated in this prospective observational cohort study. Participation was open to patients who might face a cancer screening decision: women aged 40 to 49 who had not had a mammogram in 2 years, men aged 55 to 69 who had not had a prostate-specific antigen test in 2 years, and adults aged 50 to 74 overdue for colorectal cancer screening. Data sources included module responses, electronic health record data, and a postencounter survey. RESULTS In 1 year, one-fifth of the portal users (11,458 patients) faced a potential cancer screening decision. Among these patients, 20.6% started and 7.9% completed the decision module. Fully 47.2% of module completers shared responses with their clinician. After their next office visit, 57.8% of those surveyed thought their clinician had seen their responses, and many reported the module made their appointment more productive (40.7%), helped engage them in the decision (47.7%), broadened their knowledge (48.1%), and improved communication (37.5%). CONCLUSIONS Many patients face decisions that can be anticipated and proactively facilitated through technology. Although use of technology has the potential to make visits more efficient and effective, cultural, workflow, and technical changes are needed before it could be widely disseminated
- …