1 research outputs found
5G Enabled Moving Robot Captured Image Encryption with Principal Component Analysis Method
Estimating the captured image of moving robots is very difficult. These images are vital in analyzing earth's surface objects for many applications like studying environmental conditions, Land use and Land Cover changes, and change detection studies of worldwide change. Multispectral robot-captured images have a massive amount of low-resolution data, which is lost due to a lack of capture efficiency due to artificial and atmospheric reasons. The image transformation is required in a 5G network with effective transmission by reducing noise, inconsistent lighting, and low resolution, degrading image quality. In this paper, the authors proposed the machine learning dimensionality reduction technique i.e. Principle Component Analysis (PCA) and which is used for metastasizing the 5 G-enabled moving robot captured image to enrich the image's visual perception to analyze the exact information of global or local data. The encryption algorithm implanted for data reduction and transmission over the 5G network gives sophisticated results compared with other standard methods. This proposed algorithm gives better performance in developing data reduction, network convergence speed, reduces the training time for object classification, and improves accuracy for multispectral moving robot-captured images by the support of 5G network