62 research outputs found

    EGF increases expression and activity of PAs in preimplantation rat embryos and their implantation rate

    Get PDF
    BACKGROUND: Embryo implantation plays a major role in embryogenesis and the outcome of pregnancy. Plasminogen activators (PAs) have been implicated in mammalian fertilization, early stages of development and embryo implantation. As in-vitro developing embryos resulted in lower implantation rate than those developed in-vivo we assume that a reduced PAs activity may be involved. In the present work we studied the effect of EGF on PAs activity, quantity and embryo implantation. METHODS: Zygotes were flushed from rat oviducts on day one of pregnancy and grown in-vitro in R1ECM supplemented with EGF (10 ng/ml) and were grown up to the blastocyst stage. The control groups were grown in the same medium without EGF. The distribution and quantity of the PAs were examined using fluorescence immunohistochemistry followed by measurement of PAs activity using the chromogenic assay. Implantation rate was studied using the embryo donation model. RESULTS: PAs distribution in the embryos was the same in EGF treated and untreated embryos. Both PAs were localized in the blastocysts' trophectoderm, supporting the assumption that PAs play a role in the implantation process in rats. EGF increased the quantity of uPA at all stages studied but the 8-cell stage as compared with controls. The tissue type PA (tPA) content was unaffected except the 8-cell stage, which was increased. The activity of uPA increased gradually towards the blastocyst stage and more so due to the presence of EGF. The activity of tPA did not vary with the advancing developmental stages although it was also increased by EGF. The presence of EGF during the preimplantation development doubled the rate of implantation of the treated group as compared with controls

    Defective folliculogenesis in female mice lacking Vaccinia-related kinase 1

    Get PDF
    The Vaccinia-related kinase 1(VRK1), which is generally implicated in modulating cell cycle, plays important roles in mammalian gametogenesis. Female infertility in VRK1-deficient mice was reported to be caused by defective meiotic progression in oocyte at postovulatory stage. VRK1 roles in folliculogenesis, however, remain largely unknown. Here, accurate quantification of folliculogenesis is performed by a direct visualization of ‘intact’ ovary in 3-dimensions (3-D) using a synchrotron X-ray microtomography. In VRK1-deficient ovaries, the numbers of pre-antral and antral follicles are significantly reduced by 38% and 46%, respectively, comparing to control. The oocytes volumes in antral and Graffian follicles also decrease by 42% and 37% in the mutants, respectively, indicating defects in oocyte quality at preovulatory stage. Genetic analysis shows that gene expressions related to folliculogenesis are down-regulated in VRK1-deficient ovaries, implying defects in folliculogenesis. We suggest that VRK1 is required for both follicle development and oocyte growth in mammalian female reproduction system

    Elevated Non-Esterified Fatty Acid Concentrations during Bovine Oocyte Maturation Compromise Early Embryo Physiology

    Get PDF
    Elevated concentrations of serum non-esterified fatty acids (NEFA), associated with maternal disorders such as obesity and type II diabetes, alter the ovarian follicular micro-environment and have been associated with subfertility arising from reduced oocyte developmental competence. We have asked whether elevated NEFA concentrations during oocyte maturation affect the development and physiology of zygotes formed from such oocytes, using the cow as a model. The zygotes were grown to blastocysts, which were evaluated for their quality in terms of cell number, apoptosis, expression of key genes, amino acid turnover and oxidative metabolism. Oocyte maturation under elevated NEFA concentrations resulted in blastocysts with significantly lower cell number, increased apoptotic cell ratio and altered mRNA abundance of DNMT3A, IGF2R and SLC2A1. In addition, the blastocysts displayed reduced oxygen, pyruvate and glucose consumption, up-regulated lactate consumption and higher amino acid metabolism. These data indicate that exposure of maturing oocytes to elevated NEFA concentrations has a negative impact on fertility not only through a reduction in oocyte developmental capacity but through compromised early embryo quality, viability and metabolism

    The role of dietary fibre in pig production, with a particular emphasis on reproduction

    Get PDF
    Abstract Fibres from a variety of sources are a common constituent of pig feeds. They provide a means to utilise locally-produced plant materials which are often a by-product of the food or drink industry. The value of a high fibre diet in terms of producing satiety has long been recognised. However the addition of fibre can reduce feed intake, which is clearly detrimental during stages of the production cycle when nutrient needs are high, for example in growing piglets and during lactation. More recently, fibre has been found to promote novel benefits to pig production systems, particularly given the reduction in antimicrobial use world-wide, concern for the welfare of animals fed a restricted diet and the need to ensure that such systems are more environmentally friendly. For example, inclusion of dietary fibre can alter the gut microbiota in ways that could reduce the need for antibiotics, while controlled addition of certain fibre types may reduce nitrogen losses into the environment and so reduce the environmental cost of pig production. Of particular potential value is the opportunity to use crude fibre concentrates as ‘functional’ feed additives to improve young pig growth and welfare. Perhaps the greatest opportunity for the use of high fibre diets is to improve the reproductive efficiency of pigs. Increased dietary fibre before mating improves oocyte maturation, prenatal survival and litter size; providing a consumer-acceptable means of increasing the amount of saleable meat produced per sow. The mechanisms responsible for these beneficial effects remain to be elucidated. However, changes in plasma and follicular fluid concentrations of key hormones and metabolites, as well as effects of the hypothalamic satiety centre on gonadotrophin secretion and epigenetic effects are strong candidates

    A Simple Approach for COnsumption and RElease (CORE) Analysis of Metabolic Activity in Single Mammalian Embryos

    Get PDF
    Non-invasive assay of the consumption and release of metabolites by individual human embryos could allow selection at the cleavage stage of development and facilitate Single Embryo Transfer in clinical IVF but will require simple, high throughput, sensitive methods applicable to small volume samples. A rapid, simple, non-invasive method has therefore been devised using a standard fluorescence plate reader, and used to measure the consumption of pyruvate and glucose, and release of lactate by single bovine embryos at all stages of preimplantation development in culture; amino acid profiles have been determined using HPLC. Early embryos with an ‘intermediate’ level (6.14±0.27 pmol/embryo/h) of pyruvate uptake were associated with the highest rate (68.3%) of blastocyst development indicating that a mid “optimum” range of pyruvate consumption correlates with high viability in this bovine model

    Sequential analysis of global gene expression profiles in immature and in vitro matured bovine oocytes: potential molecular markers of oocyte maturation

    Get PDF
    Abstract Background Without intensive selection, the majority of bovine oocytes submitted to in vitro embryo production (IVP) fail to develop to the blastocyst stage. This is attributed partly to their maturation status and competences. Using the Affymetrix GeneChip Bovine Genome Array, global mRNA expression analysis of immature (GV) and in vitro matured (IVM) bovine oocytes was carried out to characterize the transcriptome of bovine oocytes and then use a variety of approaches to determine whether the observed transcriptional changes during IVM was real or an artifact of the techniques used during analysis. Results 8489 transcripts were detected across the two oocyte groups, of which ~25.0% (2117 transcripts) were differentially expressed (p < 0.001); corresponding to 589 over-expressed and 1528 under-expressed transcripts in the IVM oocytes compared to their immature counterparts. Over expression of transcripts by IVM oocytes is particularly interesting, therefore, a variety of approaches were employed to determine whether the observed transcriptional changes during IVM were real or an artifact of the techniques used during analysis, including the analysis of transcript abundance in oocytes in vitro matured in the presence of α-amanitin. Subsets of the differentially expressed genes were also validated by quantitative real-time PCR (qPCR) and the gene expression data was classified according to gene ontology and pathway enrichment. Numerous cell cycle linked (CDC2, CDK5, CDK8, HSPA2, MAPK14, TXNL4B), molecular transport (STX5, STX17, SEC22A, SEC22B), and differentiation (NACA) related genes were found to be among the several over-expressed transcripts in GV oocytes compared to the matured counterparts, while ANXA1, PLAU, STC1and LUM were among the over-expressed genes after oocyte maturation. Conclusion Using sequential experiments, we have shown and confirmed transcriptional changes during oocyte maturation. This dataset provides a unique reference resource for studies concerned with the molecular mechanisms controlling oocyte meiotic maturation in cattle, addresses the existing conflicting issue of transcription during meiotic maturation and contributes to the global goal of improving assisted reproductive technology

    Improvement in in vitro

    No full text
    corecore