39 research outputs found

    Modelling of the instrument spectral response of conventionnal and imaging Fourier transform spectrometers

    Get PDF
    La spectroscopie par la mesure du spectre optique est un outil dont on ne peut aujourd’hui plus se passer dans la grande majoritĂ© des laboratoires de chimie analytique et pour les applications de tĂ©lĂ©dĂ©tection. À cet effet, l’usage de spectromĂštres par transformation de Fourier, les FTS (Fourier Transform Spectrometer), est trĂšs rĂ©pandu. Parmi ces spectromĂštres, on trouve de plus en plus des instruments imageurs: les iFTS. À la diffĂ©rence des FTS classiques qui ne mesurent qu’un seul point, les iFTS mesurent un grand nombre de points d’une scĂšne simultanĂ©ment, ce qui ouvre la porte Ă  des analyses spectrales sur des images. Les mesures spectrales effectuĂ©es par des FTS prĂ©sentent certaines erreurs systĂ©matiques qui sont en grande partie dĂ©crites par la fonction de rĂ©ponse spectrale de l’instrument, ou la SRF (Spectral Response Function). Dans le cas des instruments imageurs, chaque pixel possĂšde sa propre rĂ©ponse spectrale individuelle. Cela ouvre une toute nouvelle dimension dans l’analyse et la prĂ©diction des erreurs systĂ©matiques de l’instrument. GrĂące Ă  la combinaison de la capacitĂ© d’imagerie et de tĂ©lĂ©dĂ©tection des FTS imageurs, ce type d’instrument est souvent choisi pour des applications aĂ©rospatiales de sciences atmosphĂ©riques, tant pour l’étude de l’atmosphĂšre terrestre que d’autre corps cĂ©lestes. Ces applications sont toutefois trĂšs exigeantes et prĂ©sentent des requis trĂšs stricts en matiĂšre de prĂ©cision spectrale des instruments de mesure. RĂ©pondre Ă  ces exigences sans une connaissance excellente de la rĂ©ponse spectrale est impensable. La modĂ©lisation de la rĂ©ponse des spectromĂštres permet d’obtenir une bonne connaissance des performances de ces instruments. Cette thĂšse propose d’abord une revue des effets affectant la rĂ©ponse spectrale des FTS imageurs, pour ensuite prĂ©senter une nouveau modĂšle numĂ©rique de cette famille d’instruments. Ce modĂšle global de performance spectrale inclut des effets optiques gĂ©nĂ©ralement ignorĂ©s, simplifiĂ©s ou modĂ©lisĂ©s individuellement. La nĂ©cessitĂ© de modĂ©liser ces effets, tels que ceux qui sont causĂ©s par la fonction de transfert optique de l’objectif du dĂ©tecteur ou par l’architecture de la matrice de dĂ©tecteur en plan focal (FPA), est dĂ©montrĂ©e par des usages exemplaires du modĂšle. Enfin, l’application du modĂšle comme support Ă  l’analyse de performance du spectromĂštre imageur GLORIA est prĂ©sentĂ©e.Spectroscopy and the measurement of light spectrum have become essential tools in a large number of fields, from analytic laboratories to remote sensing field measurements. In these applications, the use of Fourier transform spectrometers (FTS) is widespread and, more recently, imaging Fourier transform spectrometers (iFTS) are becoming ever more popular. The iFTS instruments enable spatially resolved highresolution spectral analysis within a single measurement, thus allowing the study of fine spectral variations in observed scenes. Such measurements inherently include systematic errors which can be in large part described by the instrument spectral response function, often referred to as SRF. In the case of iFTS, each pixel of the instrument will sport a different spectral response, which opens a whole new dimension not only in the measurement itself, but also for error analysis and instrument design. Because of their unique imaging capacity, iFTS instruments are a prime choice for remote sensing applications from airborne or spaceborne platforms for the measurement of the Earth atmosphere, as well as the atmosphere of other celestial bodies. The requirements on the spectral accuracy demanded by such missions are very high. To achieve these requirements, an excellent knowledge of the instrument spectral response is essential. Modelling of the spectral response of iFTS instruments is a possible approach to achieve the desired knowledge of instrument performances. This thesis offers a review of the factors affecting the spectral performances of FTS instruments from which a numerical model of the spectral response specifically designed with imaging instrument in mind is proposed. This model integrates optical effects which were up to now only studied separately – if at all – and not integrated in a global performance model of the instrument. The necessity to consider these effects, such as those caused by the optical transfer function of the detector imaging optic or the architecture of the imaging focal plane array (FPA), is demonstrated. Using dedicated measurement of the airborne iFTS GLORIA (Gimballed Limb Observer for Radiance of the Atmosphere), the application of the model for performance analysis and review is demonstrated

    Pollution trace gas distributions and their transport in the Asian monsoon upper troposphere and lowermost stratosphere during the StratoClim campaign 2017

    Get PDF
    We present the first high-resolution measurements of pollutant trace gases in the Asian summer monsoon upper troposphere and lowermost stratosphere (UTLS) from the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) during the StratoClim (Stratospheric and upper tropospheric processes for better climate predictions) campaign based in Kathmandu, Nepal, 2017. Measurements of peroxyacetyl nitrate (PAN), acetylene (C2_2H2_2), and formic acid (HCOOH) show strong local enhancements up to altitudes of 16\,km. More than 500\,pptv of PAN, more than 200\,pptv of C2_2H2_2, and more than 200\,pptv of HCOOH are observed. Air masses with increased volume mixing ratios of PAN and C2_2H2_2 at altitudes up to 18\,km, reaching to the lowermost stratosphere, were present at these altitudes for more than 10\,d, as indicated by trajectory analysis. A local minimum of HCOOH is correlated with a previously reported maximum of ammonia (NH3_3), which suggests different washout efficiencies of these species in the same air masses. A backward trajectory analysis based on the models Alfred Wegener InsTitute LAgrangian Chemistry/Transport System (ATLAS) and TRACZILLA, using advanced techniques for detection of convective events, and starting at geolocations of GLORIA measurements with enhanced pollution trace gas concentrations, has been performed. The analysis shows that convective events along trajectories leading to GLORIA measurements with enhanced pollutants are located close to regions where satellite measurements by the Ozone Monitoring Instrument (OMI) indicate enhanced tropospheric columns of nitrogen dioxide (NO2_2) in the days prior to the observation. A comparison to the global atmospheric models Copernicus Atmosphere Monitoring Service (CAMS) and ECHAM/MESSy Atmospheric Chemistry (EMAC) has been performed. It is shown that these models are able to reproduce large-scale structures of the pollution trace gas distributions for one part of the flight, while the other part of the flight reveals large discrepancies between models and measurement. These discrepancies possibly result from convective events that are not resolved or parameterized in the models, uncertainties in the emissions of source gases, and uncertainties in the rate constants of chemical reactions

    Perforating freestanding molybdenum disulfide monolayers with highly charged ions

    Full text link
    Porous single layer molybdenum disulfide (MoS2_2) is a promising material for applications such as DNA sequencing and water desalination. In this work, we introduce irradiation with highly charged ions (HCIs) as a new technique to fabricate well-defined pores in MoS2_2. Surprisingly, we find a linear increase of the pore creation efficiency over a broad range of potential energies. Comparison to atomistic simulations reveals the critical role of energy deposition from the ion to the material through electronic excitation in the defect creation process, and suggests an enrichment in molybdenum in the vicinity of the pore edges at least for ions with low potential energies. Analysis of the irradiated samples with atomic resolution scanning transmission electron microscopy reveals a clear dependence of the pore size on the potential energy of the projectiles, establishing irradiation with highly charged ions as an effective method to create pores with narrow size distributions and radii between ca. 0.3 and 3 nm.Comment: 22 pages, 4 figure

    Unusual chlorine partitioning in the 2015/16 Arctic winter lowermost stratosphere: Observations and simulations

    Get PDF
    The Arctic winter 2015/16 was characterized by cold stratospheric temperatures. Here we present a comprehensive view of the temporal evolution of chlorine in the lowermost stratosphere over the course of the studied winter. We utilize two-dimensional vertical cross sections of ozone (\chem{O_3}) and chlorine nitrate (\chem{ClONO_2}), measured by the airborne limb imager GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) during the POLSTRACC/GW-LCYCLE~II/GWEX/SALSA campaigns, to investigate the tropopause region in detail. Observations from three long-distance flights in January, February, and March~2016 are discussed. \chem{ClONO_2} volume mixing ratios up to 1100\,pptv were measured at 380\,K potential temperature in mesoscale structures. Similar mesoscale structures are also visible in \chem{O_3} measurements. Both trace gas measurements are applied to evaluate simulation results from the chemistry transport model CLaMS (Chemical Lagrangian Model of the Stratosphere) and the chemistry--climate model EMAC (ECHAM5/MESSy Atmospheric Chemistry). These comparisons show agreement within the expected performance of these models. Satellite measurements from Aura/MLS (Microwave Limb Sounder) and SCISAT/ACE-FTS (Atmospheric Chemistry Experiment -- Fourier Transform Spectrometer) provide an overview over the whole winter and information about the stratospheric situation above the flight altitude. Time series of these satellite measurements reveal unusually low hydrochloric acid (HCl) and \chem{ClONO_2} at 380\,K from the beginning of January to the end of February~2016, while chlorine monoxide (ClO) is strongly enhanced. In March~2016, unusually rapid chlorine deactivation into HCl is observed instead of deactivation into \chem{ClONO_2}, the more typical pathway for deactivation in the Arctic. Chlorine deactivation observed in the satellite time series is well reproduced by CLaMS. Sensitivity simulations with CLaMS demonstrate the influence of low abundances of \chem{O_3} and reactive nitrogen (\chem{NO_\mathit{y}}) due to ozone depletion and sedimentation of \chem{NO_\mathit{y}}-containing particles, respectively. On the basis of the different altitude and time ranges of these effects, we conclude that the substantial chlorine deactivation into HCl at 380\,K arose as a result of very low ozone abundances together with low temperatures. Additionally, CLaMS estimates ozone depletion of at least 0.4\,ppmv at 380\,K and 1.75\,ppmv at 490\,K, which is comparable to other extremely cold Arctic winters. We have used CLaMS trajectories to analyze the history of enhanced \chem{ClONO_2} measured by GLORIA. In February, most of the enhanced \chem{ClONO_2} is traced back to chlorine deactivation that had occurred within the past few days prior to the GLORIA measurement. In March, after the final warming, air masses in which chlorine has previously been deactivated into \chem{ClONO_2} have been transported in the remnants of the polar vortex towards the location of measurement for at least~11\,d

    Pollution trace gases C₂H₆, C₂H₂, HCOOH, and PAN in the North Atlantic UTLS: observations and simulations

    Get PDF
    Measurements of the pollution trace gases ethane (C2H6), ethyne (C2H2), formic acid (HCOOH), and peroxyacetyl nitrate (PAN) were performed in the North Atlantic upper troposphere and lowermost stratosphere (UTLS) region with the airborne limb imager GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) with high spatial resolution down to cloud top. Observations were made during flights with the German research aircraft HALO (High Altitude and LOng Range Research Aircraft) in the frame of the WISE (Wave-driven ISentropic Exchange) campaign, which was carried out in autumn 2017 from Shannon (Ireland) and Oberpfaffenhofen (Germany). Enhanced volume mixing ratios (VMRs) of up to 2.2 ppbv C2H6, 0.2 ppbv C2H2, 0.9 ppbv HCOOH, and 0.4 ppbv PAN were detected during the flight on 13 September 2017 in the upper troposphere and around the tropopause above the British Isles. Elevated quantities of PAN were measured even in the lowermost stratosphere (locally up to 14 km), likely reflecting the fact that this molecule has the longest lifetime of the four species discussed herein. Backward trajectory calculations as well as global three-dimensional Chemical Lagrangian Model of the Stratosphere (CLaMS) simulations with artificial tracers of air mass origin have shown that the main sources of the observed pollutant species are forest fires in North America and anthropogenic pollution in South Asia and Southeast Asia uplifted and moved within the Asian monsoon anticyclone (AMA) circulation system. After release from the AMA, these species or their precursor substances are transported by strong tropospheric winds over large distances, depending on their particular atmospheric lifetime of up to months. Observations are compared to simulations with the atmospheric models EMAC (ECHAM5/MESSy Atmospheric Chemistry) and CAMS (Copernicus Atmosphere Monitoring Service). These models are qualitatively able to reproduce the measured VMR enhancements but underestimate the absolute amount of the increase. Increasing the emissions in EMAC by a factor of 2 reduces the disagreement between simulated and measured results and illustrates the importance of the quality of emission databases used in chemical models

    Airborne limb-imaging measurements of temperature, HNO3, O3, ClONO2, H2O and CFC-12 during the Arctic winter 2015/2016: characterization, in situ validation and comparison to Aura/MLS

    Get PDF
    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) was operated on board the German High Altitude and Long Range Research Aircraft (HALO) during the PGS (POLSTRACC/GW-LCYCLE/SALSA) aircraft campaigns in the Arctic winter 2015/2016. Research flights were conducted from 17 December 2015 until 18 March 2016 within 25–87°N, 80°W–30°E. From the GLORIA infrared limb-emission measurements, two-dimensional cross sections of temperature, HNO3, O3, ClONO2, H2O and CFC-12 are retrieved. During 15 scientific flights of the PGS campaigns the GLORIA instrument measured more than 15000 atmospheric profiles at high spectral resolution. Dependent on flight altitude and tropospheric cloud cover, the profiles retrieved from the measurements typically range between 5 and 14km, and vertical resolutions between 400 and 1000m are achieved. The estimated total (random and systematic) 1σ errors are in the range of 1 to 2K for temperature and 10% to 20% relative error for the discussed trace gases. Comparisons to in situ instruments deployed on board HALO have been performed. Over all flights of this campaign the median differences and median absolute deviations between in situ and GLORIA observations are −0.75 K ± 0.88K for temperature, −0.03 ppbv ± 0.85ppbv for HNO3, −3.5 ppbv ± 116.8ppbv for O3, −15.4 pptv ± 102.8pptv for ClONO2, −0.13 ppmv ± 0.63ppmv for H2O and −19.8 pptv ± 46.9pptv for CFC-12. Seventy-three percent of these differences are within twice the combined estimated errors of the cross-compared instruments. Events with larger deviations are explained by atmospheric variability and different sampling characteristics of the instruments. Additionally, comparisons of GLORIA HNO3 and O3 with measurements of the Aura Microwave Limb Sounder (MLS) instrument show highly consistent structures in trace gas distributions and illustrate the potential of the high-spectral-resolution limb-imaging GLORIA observations for resolving narrow mesoscale structures in the upper troposphere and lower stratosphere (UTLS)

    Mesoscale fine structure of a tropopause fold over mountains

    Get PDF
    We report airborne remote-sensing observations of a tropopause fold during two crossings of the polar front jet over northern Italy on 12 January 2016. The GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) observations allowed for a simultaneous mapping of temperature, water vapour, and ozone. They revealed deep, dry, and ozone-rich intrusions into the troposphere. The mesoscale fine structures of dry filaments at the cyclonic shear side north of the jet and tongues of moist air entraining tropospheric air into the stratosphere along the anticyclonic shear side south of the jet were clearly resolved by GLORIA observations. Vertically propagating mountain waves with recorded temperature residuals exceeding ±3 K were detected above the Apennines. Their presence enhanced gradients of all variables locally in the vicinity of the tropopause. The combination of H2O−O3 correlations with potential temperature reveals an active mixing region and shows clear evidence of troposphere-to-stratosphere and stratosphere-to-troposphere exchange. High-resolution short-term deterministic forecasts of ECMWF\u27s integrated forecast system (IFS) applying GLORIA\u27s observational filter reproduce location, shape, and depth of the tropopause fold very well. The fine structure of the mixing region, however, cannot be reproduced even with the 9 km horizontal resolution of the IFS, used here. This case study demonstrates convincingly the capabilities of linear limb-imaging observations to resolve mesoscale fine structures in the upper troposphere and lower stratosphere, validates the high quality of the IFS data, and suggests that mountain wave perturbations have the potential to modulate exchange processes in the vicinity of tropopause folds

    Non-orographic gravity waves and turbulence caused by merging jet streams

    Get PDF
    Jet streams are important sources of non-orographic internal gravity waves and clear air turbulence (CAT). We analyze non-orographic gravity waves and CAT during a merger of the polar front jet stream (PFJ) with the subtropical jet stream (STJ) above the southern Atlantic. Thereby, we use a novel combination of airborne observations covering the meso-scale and turbulent scale in combination with high-resolution deterministic short-term forecasts. Coherent phase lines of temperature perturbations by gravity waves stretching along a highly sheared tropopause fold are simulated by the ECMWF IFS (integrated forecast system) forecasts. During the merging event, the PFJ reverses its direction from approximately antiparallel to parallel with respect to the STJ, going along with strong wind shear and horizontal deformation. Temperature perturbations in limb-imaging and lidar observations onboard the research aircraft HALO during the SouthTRAC campaign show remarkable agreement with the IFS data. Ten hours earlier, the IFS data show an “X-shaped” pattern in the temperature perturbations emanating from the sheared tropopause fold. Tendencies of the IFS wind components show that these gravity waves are excited by spontaneous emission adjusting the strongly divergent flow when the PFJ impinges the STJ. In situ observations of temperature and wind components at 100 Hz confirm upward propagation of the probed portion of the gravity waves. They furthermore reveal embedded episodes of light-to-moderate CAT, Kelvin Helmholtz waves, and indications for partial wave reflection. Patches of low Richardson numbers in the IFS data coincide with the CAT observations, suggesting that this event was accessible to turbulence forecasting
    corecore