99 research outputs found
Activation of mesangial cell MAPK in responseto homocysteine
Activation of mesangial cell MAPK in response to homocysteine.BackgroundAlteration in mesangial cell function is central to the progression of glomerular disease in numerous models of chronic renal failure (CRF). Animal models of chronic glomerular disease are characterized by mesangial cell proliferation and elaboration of extracellular matrix protein (ECM), resulting in glomerulosclerosis. Elevated plasma levels of homocysteine (Hcy) are seen in both animal models and humans with CRF, and have been proposed to contribute to the high prevalence of vascular disease in this group. Some of the pathogenetic effects of Hcy are thought to be mediated via the induction of endoplasmic reticulum stress. Thus, Hcy effects on mesangial cells could contribute to the progression of CRF. Previous work has shown Hcy- mediated induction of Erk mitogen-activated protein kinase (MAPK) in vascular smooth muscle cells (VSMCs). Erk induces increases in activator protein-1 (AP-1) transcription factor activity which may augment mesangial cell proliferation and ECM protein production. Consequently, we studied the effect of Hcy on mesangial cell Erk signaling.MethodsMesangial cells were exposed to Hcy after 24 hours of serum starvation and Erk activity assessed. Nuclear translocation of phospho-Erk was visualized by confocal microscopy. AP-1 nuclear protein binding was measured in response to Hcy by mobility shift assay. Hcy-induced mesangial cell calcium flux was measured in Fura-2 loaded cells. Mesangial cell DNA synthesis in response to Hcy was assessed by [3H]-thymidine incorporation and proliferation by Western blotting for proliferating cell nuclear antigen (PCNA). Expression of endoplasmic reticulum stress response genes were determined by Northern and Western analysis.ResultsHcy led to an increase in Erk activity that was maximal at 50 μmol/L and 20 minutes of treatment. Subsequent experiments used this concentration and time point. Erk activity in response to Hcy was insensitive to n-acetylcysteine and catalase, indicating oxidative stress did not play a role. However, Hcy50 μmol/L induced a brief increase in intracellular mesangial cell calcium within 5 minutes, and the calcium ionophores A23187 and ionomycin increased Erk activity while chelation of intracellular calcium with BAPTA-AM abrogated the Erk response to Hcy. Confocal microscopy of activated Erk nuclear translocation mirrored these results as did mesangial cell nuclear protein binding to AP-1 consensus sequences. Hcy- induced increases in thymidine incorporation and PCNA expression at 24 hours were Erk dependent. The expression of endoplasmic reticulum stress response genes was significantly elevated by Hcy in an Erk-dependent manner.ConclusionHcy increases Erk activity in mesangial cells via a calcium-dependent mechanism, resulting in increased AP-1 nuclear protein binding, cell DNA synthesis and proliferation and induction of endoplasmic reticulum stress. These observations suggest potential mechanisms by which Hcy may contribute to progressive glomerular injury
Factors affecting calcium oxalate dihydrate fragmented calculi regrowth
BACKGROUND: The use of extracorporeal shock wave lithotripsy (ESWL) to treat calcium oxalate dihydrate (COD) renal calculi gives excellent fragmentation results. However, the retention of post-ESWL fragments within the kidney remains an important health problem. This study examined the effect of various urinary conditions and crystallization inhibitors on the regrowth of spontaneously-passed post-ESWL COD calculi fragments. METHODS: Post-ESWL COD calculi fragments were incubated in chambers containing synthetic urine varying in pH and calcium concentration: pH = 5.5 normocalciuria (3.75 mM), pH = 5.5 hypercalciuria (6.25 mM), pH = 6.5 normocalciuria (3.75 mM) or pH = 6.5 hypercalciuria (6.25 mM). Fragment growth was evaluated by measuring increases in weight. Fragment growth was standardized by calculating the relative mass increase. RESULTS: Calcium oxalate monohydrate (COM) crystals formed on COD renal calculi fragments under all conditions. Under pH = 5.5 normocalciuria conditions, only COM crystals formed (growth rate = 0.22 ± 0.04 μg/mg·h). Under pH = 5.5 hypercalciuria and under pH = 6.5 normocalciuria conditions, COM crystals and a small number of new COD crystals formed (growth rate = 0.32 ± 0.03 μg/mg·h and 0.35 ± 0.05 μg/mg·h, respectively). Under pH = 6.5 hypercalciuria conditions, large amounts of COD, COM, hydroxyapatite and brushite crystals formed (growth rate = 3.87 ± 0. 34 μg/mg·h). A study of three crystallization inhibitors demonstrated that phytate completely inhibited fragment growth (2.27 μM at pH = 5.5 and 4.55 μM at pH = 6.5, both under hypercalciuria conditions), while 69.0 μM pyrophosphate caused an 87% reduction in mass under pH = 6.5 hypercalciuria conditions. In contrast, 5.29 mM citrate did not inhibit fragment mass increase under pH = 6.5 hypercalciuria conditions. CONCLUSION: The growth rate of COD calculi fragments under pH = 6.5 hypercalciuria conditions was approximately ten times that observed under the other three conditions. This observation suggests COD calculi residual fragments in the kidneys together with hypercalciuria and high urinary pH values may be a risk factor for stone growth. The study also showed the effectiveness of specific crystallization inhibitors in slowing calculi fragment growth
Family history in stone disease: how important is it for the onset of the disease and the incidence of recurrence?
The aim of this study was to evaluate the possible effect of a positive family history on the age at the onset of urinary stone disease and the frequency of subsequent symptomatic episodes relating to the disease. Between March 2006 and April 2009, patients with either a newly diagnosed or a previously documented stone disease were included in the study program. They were required to fill in a questionnaire and divided into two groups according to the positive family history of stone disease; group I comprised patients with a family history for urinary calculi and group II those without. Depending on the data obtained from questionnaires, all patients were evaluated in detail with respect to the age at the onset of the stone disease, stone passage and interventions over time, time to first recurrence (time interval between the onset of the disease and the first recurrence), number of total stone episodes and recurrence intervals. 1,595 patients suffering from urolithiasis with the mean age of 41.7 (14–69 years) were evaluated with respect to their past history of the disease. There were 437 patients in group I and 1,158 in group II. There was no statistically significant difference between the mean age value of two groups (P = 0.09). When both genders in group I were analyzed separately, female patients tended to have higher rate of family history positivity than males. Comparative evaluation of the age at the onset of the disease between the two groups did reveal that stone formation occured at younger ages in patients with positive family history [P = 0.01 (males), P = 0.01 (females)] and the mean age of onset of the disease was lower in males than females in group I (P = 0.01). Patients in group I had relatively more stone episodes from the onset of the disease [P < 0.01 (2–4 episodes), P < 0.01 (≥5 episodes)]. Male patients were associated with higher number of stone episodes (P = 0.01). Mean time interval between recurrences was noted to be significantly shorter in group I patients when compared with patients in group II [P < 0.01 (males), P = 0.02 (females)]. In conclusion, our results showed that urinary stone formation may occur at younger ages and that the frequency of symptom episodes may be higher in patients with a positive family history. We believe that the positive family history for urinary stone disease could give us valuable information concerning the onset as well as the severity of the disease
Elucidation of the Dual Role of Mycobacterial MoeZR in Molybdenum Cofactor Biosynthesis and Cysteine Biosynthesis
The pathway of molybdenum cofactor biosynthesis has been studied in detail by using proteins from Mycobacterium species, which contain several homologs associated with the first steps of Moco biosynthesis. While all Mycobacteria species contain a MoeZR, only some strains have acquired an additional homolog, MoeBR, by horizontal gene transfer. The role of MoeBR and MoeZR was studied in detail for the interaction with the two MoaD-homologs involved in Moco biosynthesis, MoaD1 and MoaD2, in addition to the CysO protein involved in cysteine biosynthesis. We show that both proteins have a role in Moco biosynthesis, while only MoeZR, but not MoeBR, has an additional role in cysteine biosynthesis. MoeZR and MoeBR were able to complement an E. coli moeB mutant strain, but only in conjunction with the Mycobacterial MoaD1 or MoaD2 proteins. Both proteins were able to sulfurate MoaD1 and MoaD2 in vivo, while only MoeZR additionally transferred the sulfur to CysO. Our in vivo studies show that Mycobacteria have acquired several homologs to maintain Moco biosynthesis. MoeZR has a dual role in Moco- and cysteine biosynthesis and is involved in the sulfuration of MoaD and CysO, whereas MoeBR only has a role in Moco biosynthesis, which is not an essential function for Mycobacteria
Identification and characterization of a plastid-localized Arabidopsis glyoxylate reductase isoform: comparison with a cytosolic isoform and implications for cellular redox homeostasis and aldehyde detoxification
Enzymes that reduce the aldehyde chemical grouping (i.e. H-C=O) to its corresponding alcohol could be crucial in maintaining plant health. Recently, recombinant expression of a cytosolic enzyme from Arabidopsis thaliana (L.) Heynh (designated as glyoxylate reductase 1 or AtGR1) revealed that it effectively catalyses the in vitro reduction of both glyoxylate and succinic semialdehyde (SSA). In this paper, web-based bioinformatics tools revealed a second putative GR cDNA (GenBank Accession No. AAP42747; designated herein as AtGR2) that is 57% identical on an amino acid basis to GR1. Sequence encoding a putative targeting signal (N-terminal 43 amino acids) was deleted from the full-length GR2 cDNA and the resulting truncated gene was co-expressed with the molecular chaperones GroES/EL in Escherichia coli, enabling production and purification of soluble recombinant protein. Kinetic analysis revealed that recombinant GR2 catalysed the conversion of glyoxylate to glycolate (Km glyoxylate=34 μM), and SSA to γ-hydroxybutyrate (Km SSA=8.96 mM) via an essentially irreversible, NADPH-based mechanism. GR2 had a 350-fold higher preference for glyoxylate than SSA, based on the performance constants (kcat/Km). Fluorescence microscopic analysis of tobacco (Nicotiana tabacum L.) suspension cells transiently transformed with GR1 linked to the green fluorescent protein (GFP) revealed that GR1 was localized to the cytosol, whereas GR2-GFP was localized to plastids via targeting information contained within its N-terminal 45 amino acids. The identification and characterization of distinct plastidial and cytosolic glyoxylate reductase isoforms is discussed with respect to aldehyde detoxification and the plant stress response
Redox-Induced Src Kinase and Caveolin-1 Signaling in TGF-β1-Initiated SMAD2/3 Activation and PAI-1 Expression
Plasminogen activator inhibitor-1 (PAI-1), a major regulator of the plasmin-based pericellular proteolytic cascade, is significantly increased in human arterial plaques contributing to vessel fibrosis, arteriosclerosis and thrombosis, particularly in the context of elevated tissue TGF-β1. Identification of molecular events underlying to PAI-1 induction in response to TGF-β1 may yield novel targets for the therapy of cardiovascular disease.Reactive oxygen species are generated within 5 minutes after addition of TGF-β1 to quiescent vascular smooth muscle cells (VSMCs) resulting in pp60(c-src) activation and PAI-1 expression. TGF-β1-stimulated Src kinase signaling sustained the duration (but not the initiation) of SMAD3 phosphorylation in VSMC by reducing the levels of PPM1A, a recently identified C-terminal SMAD2/3 phosphatase, thereby maintaining SMAD2/3 in an active state with retention of PAI-1 transcription. The markedly increased PPM1A levels in triple Src kinase (c-Src, Yes, Fyn)-null fibroblasts are consistent with reductions in both SMAD3 phosphorylation and PAI-1 expression in response to TGF-β1 compared to wild-type cells. Activation of the Rho-ROCK pathway was mediated by Src kinases and required for PAI-1 induction in TGF-β1-stimulated VSMCs. Inhibition of Rho-ROCK signaling blocked the TGF-β1-mediated decrease in nuclear PPM1A content and effectively attenuated PAI-1 expression. TGF-β1-induced PAI-1 expression was undetectable in caveolin-1-null cells, correlating with the reduced Rho-GTP loading and SMAD2/3 phosphorylation evident in TGF-β1-treated caveolin-1-deficient cells relative to their wild-type counterparts. Src kinases, moreover, were critical upstream effectors of caveolin-1(Y14) phosphoryation and initiation of downstream signaling.TGF-β1-initiated Src-dependent caveolin-1(Y14) phosphorylation is a critical event in Rho-ROCK-mediated suppression of nuclear PPM1A levels maintaining, thereby, SMAD2/3-dependent transcription of the PAI-1 gene
Disclosing Ribose-5-Phosphate Isomerase B Essentiality in Trypanosomatids.
Ribose-5-phosphate isomerase (RPI) belongs to the non-oxidative branch of the pentose phosphate pathway, catalysing the inter-conversion of D-ribose-5-phosphate and D-ribulose-5-phosphate. Trypanosomatids encode a type B RPI, whereas humans have a structurally unrelated type A, making RPIB worthy of exploration as a potential drug target. Null mutant generation in Leishmania infantum was only possible when an episomal copy of RPIB gene was provided, and the latter was retained both in vitro and in vivo in the absence of drug pressure. This suggests the gene is essential for parasite survival. Importantly, the inability to remove the second allele of RPIB gene in sKO mutants complemented with an episomal copy of RPIB carrying a mutation that abolishes isomerase activity suggests the essentiality is due to its metabolic function. In vitro, sKO promastigotes exhibited no defect in growth, metacyclogenesis or macrophage infection, however, an impairment in intracellular amastigotes' replication was observed. Additionally, mice infected with sKO mutants rescued by RPIB complementation had a reduced parasite burden in the liver. Likewise, Trypanosoma brucei is resistant to complete RPIB gene removal and mice infected with sKO mutants showed prolonged survival upon infection. Taken together our results genetically validate RPIB as a potential drug target in trypanosomatids.We would like to thank Professor Ana Tomás from the Institute for Molecular and Cell Biology, University of Porto, Portugal, for providing LimTXNPx antibody; Dr. Paul Michels from Université Catholique de Louvain, Belgium, for providing Tbenolase antibody; Professor Graham Coombs, Strathclyde University, Glasgow, for LmCS antibody; Professor Buddy Ullman, School of Medicine, Oregan Health and Science University, USA, for LdHGPRT antibody; Dr. Christine Clayton, Zentrum fur Molekulare Biologie der Universitat Heidelberg, Germany, for TbAldolase antibody. We would also like to thank Professor Jeremy Mottram, University of Glasgow, for pGL345HYG and Professor Marc Ouellette, Centre de Recherche en Infectiologie, of Laval University, Canada, for pSPαNEOα and pSPαBLASTα. We would also like to thank Dr. Jane MacDougall from Photeomix, France, for proofreading the English of the manuscript. The research leading to these results has received funding from the European Community’s Seventh Framework Programme under grant agreement No. 602773 (Project KINDRED).’ The COST Action CM1307: Targeted chemotherapy towards diseases caused by endoparasites has also contributed for this work. We would like to acknowledge Fundação para a Ciência e Tecnologia (FTC) for supporting Joana Faria (SFRH/BD/79712/2011) and Inês Loureiro (SFRH/BD/64528/2009). Inês Loureiro was also supported by the European Community’s Seventh Framework Programme (KINDRED-PR300102-BD). JT is an Investigator FCT funded by National funds through FCT and co-funded through European Social Fund within the Human Potential Operating Programme. Nuno Santarem and Pedro Cecílio are supported by fellowships from the European Community’s Seventh Framework Programme under grant agreements No. 602773 (Project KINDRED) and No. 603181 (Project MuLeVaClin), respectively
Antineoplastic Drugs as a Potential Risk Factor in Occupational Settings: Mechanisms of Action at the Cell Level, Genotoxic Effects, and Their Detection Using Different Biomarkers
U članku je prikazana osnovna podjela antineoplastičnih lijekova prema mehanizmima djelovanja na razini stanice. Objašnjeni su mehanizmi genotoksičnosti najvažnijih vrsta lijekova koji se primjenjuju u okviru uobičajenih protokola za liječenje zloćudnih novotvorina. Navedena je važeća klasifi kacija antineoplastika prema kancerogenom potencijalu, podaci o mutagenom potencijalu te je prikazana njihova podjela u skladu s anatomsko-terapijsko-kemijskim sustavom klasifi kacije. Sustavno su prikazani najvažniji
rezultati svjetskih i hrvatskih istraživanja na populacijama radnika izloženih antineoplasticima, provedenih u razdoblju 1980.-2009. s pomoću četiri najčešće primjenjivane metode: analize izmjena sestrinskih kromatida, analize kromosomskih aberacija, mikronukleus-testa i komet-testa. Objašnjena su osnovna
načela navedenih metoda te raspravljene njihove prednosti i nedostaci. Biološki pokazatelji daju važne podatke o individualnoj osjetljivosti profesionalno izloženih ispitanika koji mogu poslužiti unaprjeđenju postojećih uvjeta rada i upravljanju rizicima pri izloženosti genotoksičnim agensima. Na osnovi prednosti i nedostataka citogenetičkih metoda zaključeno je da je mikronukleus-test, koji podjednako uspješno dokazuje klastogene i aneugene učinke, jedna od najboljih metoda dostupnih za otkrivanje štetnih djelovanja antineoplastičnih lijekova koji su u aktivnoj primjeni.This article brings an overview of the mechanisms of action of antineoplastic drugs used in the clinical setting. It also describes the genotoxic potentials of the most important classes of antineoplastic drugs involved in standard chemotherapy protocols. Classifi cation of antineoplastic drugs according to the IARC monographs on the evaluation of carcinogenic risks to humans is accompanied by data on their mutagenicity and the most recent updates in the Anatomical Therapeutic Chemical (ATC) Classifi cation System. We report the main fi ndings of biomonitoring studies that were conducted in exposed healthcare workers all over the world between 1980 and 2009 using four biomarkers: sister chromatid exchanges,
chromosome aberrations, micronuclei. and the comet assay. The methods are briefl y explained and their advantages and disadvantages discussed. Biomarkers provide important information on individual genome sensitivity, which eventually might help to improve current working practices and to manage the risks
related with exposure to genotoxic agents. Taking into consideration all known advantages and drawbacks of the existing cytogenetic methods, the micronucleus assay, which is able to detect both clastogenic and aneugenic action, is the most suitable biomarker for assessing harmful effects of antineoplastic drugs currently used in health care
- …