40 research outputs found

    Self-Consistent Nuclear Shell-Model Calculation Starting from a Realistic NN Potential

    Full text link
    First self-consistent realistic shell-model calculation for the light p-shell nuclei is performed, starting from the high-precision nucleon-nucleon (NN) CD-Bonn potential. This realistic potential is renormalized deriving a low-momentum NN potential V-low-k that preserves exactly the two-nucleon low-energy physics. This V-low-k is suitable to derive a self-consistent Hartree-Fock basis that is employed to derive both effective single-particle energies and residual two-body matrix elements for the shell-model hamiltonian. Results obtained show the reliability of such a fundamental microscopic approach.Comment: 4 pages, 1 figure, 8 tables, to be published on Physics Letters

    Equivalence of model space techniques and the renormalization group for a separable model problem

    Full text link
    Lee-Suzuki similarity transformations and Krencigowa-Kuo folded diagrams are two common methods used to derive energy independent model space effective interactions for nuclear many-body systems. We demonstrate that these methods are equivalent to a Renormalization Group (RG) analysis of a separable potential model. The effective low-momentum potentials V_{eff} are shown to give the same scaling equation that RG arguments predict. We find the new result that the different model space techniques considered in this paper yield a unique low-momentum V_{eff} when applied to the toy model problem.Comment: 10 pages. Minor content and stylistic change

    Convergence properties of the effective interaction

    Full text link
    The convergence properties of two perturbative schemes to sum the so-called folded diagrams are critically reviewed, with an emphasis on the intruder state problem. The methods we study are the approaches of Kuo and co-workers and Lee and Suzuki. The suitability of the two schemes for shell-model calculations are discussed.Comment: 10 pages in revtex ver. 3.0. 3 figs can be obtained upon request. Univerisity of Oslo report UiO/PHYS/93-2

    Effective Interactions for the Three-Body Problem

    Full text link
    The three-body energy-dependent effective interaction given by the Bloch-Horowitz (BH) equation is evaluated for various shell-model oscillator spaces. The results are applied to the test case of the three-body problem (triton and He3), where it is shown that the interaction reproduces the exact binding energy, regardless of the parameterization (number of oscillator quanta or value of the oscillator parameter b) of the low-energy included space. We demonstrate a non-perturbative technique for summing the excluded-space three-body ladder diagrams, but also show that accurate results can be obtained perturbatively by iterating the two-body ladders. We examine the evolution of the effective two-body and induced three-body terms as b and the size of the included space Lambda are varied, including the case of a single included shell, Lambda hw=0 hw. For typical ranges of b, the induced effective three-body interaction, essential for giving the exact three-body binding, is found to contribute ~10% to the binding energy.Comment: 19 pages, 9 figures, submitted to PR

    Comparison of the Effective Interaction to Various Orders in Different Mass Regions

    Full text link
    The convergence of the perturbation expansion for the effective interaction to be used in shell-model calculations is investigated as function of the mass number AA, from A=4A=4 to A=208A=208. As the mass number increases, there are more intermediate states to sum over in each higher-order diagram which contributes to the effective interaction. Together with the fact that the energy denominators in each diagram are smaller for larger mass numbers, these two effects could largely enhance higher-order contributions to the effective interaction, thereby deteriorating the order-by-order convergence of the effective interaction. This effect is counterbalanced by the short range of the nucleon-nucleon interaction, which implies that its matrix elements are weaker for valence single-particle states in ``large'' nuclei with large mass number as compared to those in light nuclei. These effects are examined by comparing various mean values of the matrix elements. It turns out that the contributions from higher-order terms remain fairly stable as the mass number increases from A=4A=4 to A=208A=208. The implications for nuclear structure calculations are discussed.Comment: Revtex, 20 pages, 1 figure not include

    Novel Methods for Determining Effective Interactions for the Nuclear Shell Model

    Full text link
    The Contractor Renormalization (CORE) method is applied in combination with modern effective-theory techniques to the nuclear many-body problem. A one-dimensional--yet ``realistic''--nucleon-nucleon potential is introduced to test these novel ideas. It is found that the magnitude of ``model-space'' (CORE) corrections diminishes considerably when an effective potential that eliminates the hard-momentum components of the potential is first introduced. As a result, accurate predictions for the ground-state energy of the there-body system are made with relatively little computational effort when both techniques are used in a complementary fashion.Comment: 14 pages, 5 figures and 2 tabl

    Auxiliary potential in no-core shell-model calculations

    Full text link
    The Lee-Suzuki iteration method is used to include the folded diagrams in the calculation of the two-body effective interaction veff(2)v^{(2)}_{\rm eff} between two nucleons in a no-core model space. This effective interaction still depends upon the choice of single-particle basis utilized in the shell-model calculation. Using a harmonic-oscillator single-particle basis and the Reid-soft-core {\it NN} potential, we find that veff(2)v^{(2)}_{\rm eff} overbinds ^4\mbox{He} in 0, 2, and 4ℏΩ4\hbar\Omega model spaces. As the size of the model space increases, the amount of overbinding decreases significantly. This problem of overbinding in small model spaces is due to neglecting effective three- and four-body forces. Contributions of effective many-body forces are suppressed by using the Brueckner-Hartree-Fock single-particle Hamiltonian.Comment: 14 text pages and 4 figures (in postscript, available upon request). AZ-PH-TH/94-2

    Unitary-model-operator approach to Λ\Lambda hypernuclei

    Full text link
    A method is formulated for the description of lambda hypernuclei in the framework of the unitary-model-operator approach (UMOA). The method is applied to Λ17_{\Lambda}^{17}O. A lambda-nucleon effective interaction is derived, taking the coupling of the sigma-nucleon channel into account. The lambda single-particle energies are calculated for the 0s_{1/2}, 0p_{3/2} and 0p_{1/2} states employing the Nijmegen soft-core (NSC), J\"ulich model-\~A (J\~A) and model-\~B (J\~B) hyperon-nucleon potentials.Comment: LaTeX, 27 pages, 4 figures, uses elsart.cls, submitted to Nucl. Phys. A, revised version, the words 'unitary-correlation-operator method' have been changed to 'unitary-model-operator approach' in order to avoid unnecessary confusion, and relevant sentences have been modifie

    Realistic Shell-Model Calculations for Proton-Rich N=50 Isotones

    Get PDF
    The structure of the N=50 isotones 98Cd, 97Ag, and 96Pd is studied in terms of shell model employing a realistic effective interaction derived from the Bonn-A nucleon-nucleon potential. The single-hole energies are fixed by resorting to an analysis of the low-energy spectra of the isotones with A>= 91. Comparison shows that our results are in very satisfactory agreement with the available experimental data. This supports confidence in the predictions of our calculationsComment: 8 pages, 3 figures, to be published on Journal of Physics

    Suppression of core polarization in halo nuclei

    Get PDF
    We present a microscopic study of halo nuclei, starting from the Paris and Bonn potentials and employing a two-frequency shell model approach. It is found that the core-polarization effect is dramatically suppressed in such nuclei. Consequently the effective interaction for halo nucleons is almost entirely given by the bare G-matrix alone, which presently can be evaluated with a high degree of accuracy. The experimental pairing energies between the two halo neutrons in 6^6He and 11^{11}Li nuclei are satisfactorily reproduced by our calculation. It is suggested that the fundamental nucleon-nucleon interaction can be probed in a clearer and more direct way in halo nuclei than in ordinary nuclei.Comment: 11 pages, RevTex, 2 postscript figures; major revisions, matches version to appear in Phys. Rev. Letter
    corecore