6,131 research outputs found

    Irreversible Processes in a Universe modelled as a mixture of a Chaplygin gas and radiation

    Full text link
    The evolution of a Universe modelled as a mixture of a Chaplygin gas and radiation is determined by taking into account irreversible processes. This mixture could interpolate periods of a radiation dominated, a matter dominated and a cosmological constant dominated Universe. The results of a Universe modelled by this mixture are compared with the results of a mixture whose constituents are radiation and quintessence. Among other results it is shown that: (a) for both models there exists a period of a past deceleration with a present acceleration; (b) the slope of the acceleration of the Universe modelled as a mixture of a Chaplygin gas with radiation is more pronounced than that modelled as a mixture of quintessence and radiation; (c) the energy density of the Chaplygin gas tends to a constant value at earlier times than the energy density of quintessence does; (d) the energy density of radiation for both mixtures coincide and decay more rapidly than the energy densities of the Chaplygin gas and of quintessence.Comment: 8 pages, 1 figure, to be published in GR

    Non-linear terms in 2D cosmology

    Full text link
    In this work we investigate the behavior of two-dimensional (2D) cosmological models, starting with the Jackiw-Teitelboim (JT) theory of gravitation. A geometrical term, non-linear in the scalar curvature RR, is added to the JT dynamics to test if it could play the role of dark energy in a 2D expanding universe. This formulation makes possible, first, the description of an early (inflationary) 2D universe, when the van der Waals (vdW) equation of state is used to construct the energy-momentum tensor of the gravitational sources. Second, it is found that for later times the non-linear term in RR can generate an old 2D universe in accelerated expansion, where an ordinary matter dominated era evolves into a decelerated/accelerated transition, giving to the dark energy effects a geometrical origin. The results emerge through numerical analysis, following the evolution in time of the scale factor, its acceleration, and the energy densities of constituents.Comment: tex file plus figures in two zipped files. To appear in Europhys. Let

    Worker heterogeneity, new monopsony, and training

    Get PDF
    A worker's output depends not only on his/her own ability but also on that of colleagues, who can facilitate the performance of tasks that each individual cannot accomplish on his/her own. We show that this common-sense observation generates monopsony power and is sufficient to explain why employers might expend resources on training employees even when the training is of use to other firms. We show that training will take place in better-than-average or ‘good’ firms enjoying greater monopsony power, whereas ‘bad’ firms will have low-ability workers unlikely to receive much training

    Fokker-Planck type equations for a simple gas and for a semi-relativistic Brownian motion from a relativistic kinetic theory

    Full text link
    A covariant Fokker-Planck type equation for a simple gas and an equation for the Brownian motion are derived from a relativistic kinetic theory based on the Boltzmann equation. For the simple gas the dynamic friction four-vector and the diffusion tensor are identified and written in terms of integrals which take into account the collision processes. In the case of Brownian motion, the Brownian particles are considered as non-relativistic whereas the background gas behaves as a relativistic gas. A general expression for the semi-relativistic viscous friction coefficient is obtained and the particular case of constant differential cross-section is analyzed for which the non-relativistic and ultra relativistic limiting cases are calculated.Comment: To appear in PR

    Confinement effects on glass forming liquids probed by DMA

    Full text link
    Many molecular glass forming liquids show a shift of the glass transition T-g to lower temperatures when the liquid is confined into mesoporous host matrices. Two contrary explanations for this effect are given in literature: First, confinement induced acceleration of the dynamics of the molecules leads to an effective downshift of T-g increasing with decreasing pore size. Second, due to thermal mismatch between the liquid and the surrounding host matrix, negative pressure develops inside the pores with decreasing temperature, which also shifts T-g to lower temperatures. Here we present dynamic mechanical analysis measurements of the glass forming liquid salol in Vycor and Gelsil with pore sizes of d=2.6, 5.0 and 7.5 nm. The dynamic complex elastic susceptibility data can be consistently described with the assumption of two relaxation processes inside the pores: A surface induced slowed down relaxation due to interaction with rough pore interfaces and a second relaxation within the core of the pores. This core relaxation time is reduced with decreasing pore size d, leading to a downshift of T-g proportional to 1/d in perfect agreement with recent differential scanning calorimetry (DSC) measurements. Thermal expansion measurements of empty and salol filled mesoporous samples revealed that the contribution of negative pressure to the downshift of T-g is small (<30%) and the main effect is due to the suppression of dynamically correlated regions of size xi when the pore size xi approaches

    Mining multi-dimensional data for decision support

    Full text link

    Using Chemical Modeling to Asses Water Quality in the RaigĂłn Aquifer System in Southern Uruguay

    Get PDF
    The RaigĂłn aquifer is an important groundwater system in southern Uruguay. The increasing use of groundwater resources in the last decades has provoked changes in the concentration of many elements which are strongly related to anthropogenic pollution sources. Concentration levels are useful to detect changes in reservoir status but it is also necessary to analyze their chemical significance in order to make an accurate assessment of the sources of contamination and the causes of changes. In this work we use the available thermodynamic data to calculate chemical speciation on these groundwater samples. Trace elements present as anions, in particular Se and Mo, are especially focused to show the chemical modeling possibilities. Both elements form anionic species, predominantly MoO42- and SeO42-. Results show that these anions interact in solution and are greatly influenced by the concentration of the abundant calcium ion. Localized changes in pH can strongly affect the situation. The same is observed with the pE parameter, but only in the case of Se. Chemical speciation of trace elements is in general highly dependent on pH, pE and concentration of major elements. In consequence, for a fixed analytical total concentration, these parameters can markedly change the situation, affecting the mobility, the bioavailability and environmental fate of these elements. The strategy employed in this work can also be extended to the study of many other environmental water scenarios.The authors are grateful to CSIC (Programa de Apoyo a Grupos) and ANII (Project FCE_2011_6491), Uruguayan organizations, for financial support.Peer Reviewe

    Noether symmetry for non-minimally coupled fermion fields

    Full text link
    A cosmological model where a fermion field is non-minimally coupled with the gravitational field is studied. By applying Noether symmetry the possible functions for the potential density of the fermion field and for the coupling are determined. Cosmological solutions are found showing that the non-minimally coupled fermion field behaves as an inflaton describing an accelerated inflationary scenario, whereas the minimally coupled fermion field describes a decelerated period being identified as dark matter.Comment: Revised version accepted for publication in Classical and Quantum Gravit

    Electronic and phononic properties of cinnabar: ab initio calculations and some experimental results

    Full text link
    We report ab initio calculations of the electronic band structure, the corresponding optical spectra, and the phonon dispersion relations of trigonal alpha-HgS (cinnabar). The calculated dielectric functions are compared with unpublished optical measurements by Zallen and coworkers. The phonon dispersion relations are used to calculate the temperature and isotopic mass dependence of the specific heat which has been compared with experimental data obtained on samples with the natural isotope abundances of the elements Hg and S (natural minerals and vapor phase grown samples) and on samples prepared from isotope enriched elements by vapor phase transport. Comparison of the calculated vibrational frequencies with Raman and ir data is also presented. Contrary to the case of cubic beta-HgS (metacinnabar), the spin-orbit splitting of the top valence bands at the Gamma-point of the Brillouin zone (Delta_0) is positive, because of a smaller admixture of 5d core electrons of Hg. Calculations of the lattice parameters, and the pressure dependence of Delta_0 and the corresponding direct gap E_0~2eV are also presented. The lowest absorption edge is confirmed to be indirect.Comment: 13 pages, 15 figure
    • 

    corecore