37 research outputs found

    Mapping H4K20me3 onto the chromatin landscape of senescent cells indicates a function in control of cell senescence and tumor suppression through preservation of genetic and epigenetic stability

    Get PDF
    Background: Histone modification H4K20me3 and its methyltransferase SUV420H2 have been implicated in suppression of tumorigenesis. The underlying mechanism is unclear, although H4K20me3 abundance increases during cellular senescence, a stable proliferation arrest and tumor suppressor process, triggered by diverse molecular cues, including activated oncogenes. Here, we investigate the function of H4K20me3 in senescence and tumor suppression. Results: Using immunofluorescence and ChIP-seq we determine the distribution of H4K20me3 in proliferating and senescent human cells. Altered H4K20me3 in senescence is coupled to H4K16ac and DNA methylation changes in senescence. In senescent cells, H4K20me3 is especially enriched at DNA sequences contained within specialized domains of senescence-associated heterochromatin foci (SAHF), as well as specific families of non-genic and genic repeats. Altered H4K20me3 does not correlate strongly with changes in gene expression between proliferating and senescent cells; however, in senescent cells, but not proliferating cells, H4K20me3 enrichment at gene bodies correlates inversely with gene expression, reflecting de novo accumulation of H4K20me3 at repressed genes in senescent cells, including at genes also repressed in proliferating cells. Although elevated SUV420H2 upregulates H4K20me3, this does not accelerate senescence of primary human cells. However, elevated SUV420H2/H4K20me3 reinforces oncogene-induced senescence-associated proliferation arrest and slows tumorigenesis in vivo. Conclusions: These results corroborate a role for chromatin in underpinning the senescence phenotype but do not support a major role for H4K20me3 in initiation of senescence. Rather, we speculate that H4K20me3 plays a role in heterochromatinization and stabilization of the epigenome and genome of pre-malignant, oncogene-expressing senescent cells, thereby suppressing epigenetic and genetic instability and contributing to long-term senescence-mediated tumor suppression

    From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition?

    Get PDF

    Synthesis and rheological properties of poly(5-n-hexyl norbonene)

    No full text
    Poly(5-n-hexylnorbornene) (PHNB) was obtained in high molecular weight and high yields by vinyl-type polymerization of 5-n-hexyl-2-norbornene (endo/exo = 77/23) with [NiBr(NPMe3)](4)/B(C6F5)(3) as catalyst precursor. The combination of size exclusion chromatography with online light scattering and intrinsic viscosity measurements allowed the Mark-Houwink expressions to be evaluated in tetrahydrofuran. The unperturbed chain dimensions for poly(5-n-hexylnorbornene) were estimated via the extrapolation procedure of Burchard-Stockmayer-Fixman. This evaluation of the unperturbed chain dimension in turn permits the calculation of the entanglement molecular weight and the plateau modulus via the packing length model. This allows the determination of rheological properties for these materials where conventional rheology measurements are difficult, or impossible

    Paving the way for application of next generation risk assessment to safety decision-making for cosmetic ingredients.

    No full text
    Next generation risk assessment (NGRA) is an exposure-led, hypothesis-driven approach that has the potential to support animal-free safety decision-making. However, significant effort is needed to develop and test the in vitro and in silico (computational) approaches that underpin NGRA to enable confident application in a regulatory context. A workshop was held in Montreal in 2019 to discuss where effort needs to be focussed and to agree on the steps needed to ensure safety decisions made on cosmetic ingredients are robust and protective. Workshop participants explored whether NGRA for cosmetic ingredients can be protective of human health, and reviewed examples of NGRA for cosmetic ingredients. From the limited examples available, it is clear that NGRA is still in its infancy, and further case studies are needed to determine whether safety decisions are sufficiently protective and not overly conservative. Seven areas were identified to help progress application of NGRA, including further investments in case studies that elaborate on scenarios frequently encountered by industry and regulators, including those where a ‘high risk’ conclusion would be expected. These will provide confidence that the tools and approaches can reliably discern differing levels of risk. Furthermore, frameworks to guide performance and reporting should be developed
    corecore