414 research outputs found
First Results with a new Method for calculating 2-loop Box-Functions
We describe a first attempt to calculate scalar 2-loop box-functions with
arbitrary internal masses, applying a novel method proposed in hep-ph/9407234.
Four of the eight integrals are accessible to integration by means of the
residue theorem, leaving a rational function in the remaining variables. The
result of the procedure is a three- or sometimes two-dimensional integral
representation over a finite volume that can be further evaluated using
numerical methods.Comment: 10 pages, LaTeX2e, 11 eps-figures, needs epsfig.st
Nearby Clumpy, Gas Rich, Star Forming Galaxies: Local Analogs of High Redshift Clumpy Galaxies
Luminous compact blue galaxies (LCBGs) have enhanced star formation rates and
compact morphologies. We combine Sloan Digital Sky Survey data with HI data of
29 LCBGs at redshift z~0 to understand their nature. We find that local LCBGs
have high atomic gas fractions (~50%) and star formation rates per stellar mass
consistent with some high redshift star forming galaxies. Many local LCBGs also
have clumpy morphologies, with clumps distributed across their disks. Although
rare, these galaxies appear to be similar to the clumpy star forming galaxies
commonly observed at z~1-3. Local LCBGs separate into three groups: 1.
Interacting galaxies (~20%); 2. Clumpy spirals (~40%); 3. Non-clumpy,
non-spirals with regular shapes and smaller effective radii and stellar masses
(~40%). It seems that the method of building up a high gas fraction, which then
triggers star formation, is not the same for all local LCBGs. This may lead to
a dichotomy in galaxy characteristics. We consider possible gas delivery
scenarios and suggest that clumpy spirals, preferentially located in clusters
and with companions, are smoothly accreting gas from tidally disrupted
companions and/or intracluster gas enriched by stripped satellites. Conversely,
as non-clumpy galaxies are preferentially located in the field and tend to be
isolated, we suggest clumpy, cold streams, which destroy galaxy disks and
prevent clump formation, as a likely gas delivery mechanism for these systems.
Other possibilities include smooth cold streams, a series of minor mergers, or
major interactions.Comment: 22 pages, 5 figure
First Time-dependent Study of H2 and H3+ Ortho-Para Chemistry in the Diffuse Interstellar Medium: Observations Meet Theoretical Predictions
The chemistry in the diffuse interstellar medium initiates the gradual
increase of molecular complexity during the life cycle of matter. A key
molecule that enables build-up of new molecular bonds and new molecules via
proton-donation is H3+. Its evolution is tightly related to molecular hydrogen
and thought to be well understood. However, recent observations of ortho and
para lines of H2 and H3+ in the diffuse ISM showed a puzzling discrepancy in
nuclear spin excitation temperatures and populations between these two key
species. H3+, unlike H2, seems to be out of thermal equilibrium, contrary to
the predictions of modern astrochemical models. We conduct the first
time-dependent modeling of the para-fractions of H2 and H3+ in the diffuse ISM
and compare our results to a set of line-of-sight observations, including new
measurements presented in this study. We isolate a set of key reactions for H3+
and find that the destruction of the lowest rotational states of H3+ by
dissociative recombination largely control its ortho/para ratio. A plausible
agreement with observations cannot be achieved unless a ratio larger than 1:5
for the destruction of (1,1)- and (1,0)-states of H3+ is assumed. Additionally,
an increased CR ionization rate to 10(-15) 1/s further improves the fit whereas
variations of other individual physical parameters, such as density and
chemical age, have only a minor effect on the predicted ortho/para ratios. Thus
our study calls for new laboratory measurements of the dissociative
recombination rate and branching ratio of the key ion H3+ under interstellar
conditions.Comment: 27 pages, 6 figures, 3 table
Characterizing spiral arm and interarm star formation
Interarm star formation contributes significantly to a galaxy's star
formation budget, and provides an opportunity to study stellar birthplaces
unperturbed by spiral arm dynamics. Using optical integral field spectroscopy
of the nearby galaxy NGC 628 with VLT/MUSE, we construct Halpha maps including
detailed corrections for dust extinction and stellar absorption to identify 391
HII regions at 35pc resolution over 12 kpc^2. Using tracers sensitive to the
underlying gravitational potential, we associate HII regions with either arm
(271) or interarm (120) environments. Using our full spectral coverage of each
region, we find that most HII region physical properties (luminosity, size,
metallicity, ionization parameter) are independent of environment. We calculate
the fraction of Halpha luminosity due to the diffuse ionized gas (DIG)
background contaminating each HII region, and find the DIG surface brightness
to be higher within HII regions compared to the surroundings, and slightly
higher within arm HII regions. Use of the temperature sensitive [SII]/Halpha
line ratio map instead of the Halpha surface brightness to identify HII region
boundaries does not change this result. Using the dust attenuation as a tracer
of the gas, we find depletion times consistent with previous work (2 x 10^9 yr)
with no differences between the arm and interarm, however this is very
sensitive to the DIG correction. Unlike molecular clouds, which can be
dynamically affected by the galactic environment, we see fairly consistent HII
region properties in both arm and interarm environments. This suggests either a
difference in arm star formation and feedback, or a decoupling of dense star
forming clumps from the more extended surrounding molecular gas.Comment: 10 pages, 4 figures, 1 table, accepted for publication in Ap
An Interacting Galaxy System Along a Filament in a Void
Cosmological voids provide a unique environment for the study of galaxy
formation and evolution. The galaxy population in their interior have
significantly different properties than average field galaxies. As part of our
Void Galaxy Survey (VGS), we have found a system of three interacting galaxies
(VGS_31) inside a large void. VGS_31 is a small elongated group whose members
are embedded in a common HI envelope. The HI picture suggests a filamentary
structure with accretion of intergalactic cold gas from the filament onto the
galaxies. We present deep optical and narrow band H_alpha data, optical
spectroscopy, near-UV and far-UV GALEX and CO(1-0) data. We find that one of
the galaxies, a Markarian object, has a ring-like structure and a tail evident
both in optical and HI. While all three galaxies form stars in their central
parts, the tail and the ring of the Markarian object are devoid of star
formation. We discuss these findings in terms of a gravitational interaction
and ongoing growth of galaxies out of a filament. VGS_31 is one of the first
observed examples of a filamentary structure in a void. It is an important
prototype for understanding the formation of substructure in a void. This
system also shows that the galaxy evolution in voids can be as dynamic as in
high density environments.Comment: 17 pages, 8 figures, accepted for publication in A
KK246, a dwarf galaxy with extended H I disk in the Local Void
We have found that KK 246, the only confirmed galaxy located within the
nearby Tully Void, is a dwarf galaxy with an extremely extended H I disk and
signs of an H I cloud with anomalous velocity. It also exhibits clear
misalignment between the kinematical major and minor axes, indicative of an
oval distortion, and a general misalignment between the H I and optical major
axes. We measure a H I mass of 1.05 +- 0.08 x 10^8 M_sun, and a H I extent 5
times that of the stellar disk, one of the most extended H I disks known. We
estimate a dynamical mass of 4.1 x 10^9 M_sun, making this also one of the
darkest galaxies known, with a mass-to-light ratio of 89. The relative
isolation and extreme underdense environment make this an interesting case for
examining the role of gas accretion in galaxy evolution.Comment: 15 pages, 8 figures, 2 tables, accepted for publication in A
The metallicity of void dwarf galaxies
The current Lambda CDM cosmological model predicts that galaxy evolution
proceeds more slowly in lower density environments, suggesting that voids are a
prime location to search for relatively pristine galaxies that are
representative of the building blocks of early massive galaxies. To test the
assumption that void galaxies are more pristine, we compare the evolutionary
properties of a sample of dwarf galaxies selected specifically to lie in voids
with a sample of similar isolated dwarf galaxies in average density
environments. We measure gas-phase oxygen abundances and gas fractions for
eight dwarf galaxies (M_r > -16.2), carefully selected to reside within the
lowest density environments of seven voids, and apply the same calibrations to
existing samples of isolated dwarf galaxies. We find no significant difference
between these void dwarf galaxies and the isolated dwarf galaxies, suggesting
that dwarf galaxy chemical evolution proceeds independent of the large-scale
environment. While this sample is too small to draw strong conclusions, it
suggests that external gas accretion is playing a limited role in the chemical
evolution of these systems, and that this evolution is instead dominated mainly
by the internal secular processes that are linking the simultaneous growth and
enrichment of these galaxies.Comment: 6 pages, 3 figures, accepted for publication in ApJ Letter
Generation of neutral atomic beams utilizing photodetachment by high power diode laser stacks
We demonstrate the use of high power diode laser stacks to photodetach fast
hydrogen and carbon anions and produce ground term neutral atomic beams. We
achieve photodetachment efficiencies of 7.4\% for H at a beam energy
of 10\,keV and 3.7\% for C at 28\,keV. The diode laser systems used
here operate at 975\,nm and 808\,nm, respectively, and provide high continuous
power levels of up to 2\,kW, without the need of additional enhancements like
optical cavities. The alignment of the beams is straightforward and operation
at constant power levels is very stable, while maintenance is minimal. We
present a dedicated photodetachment setup that is suitable to efficiently
neutralize the majority of stable negative ions in the periodic table
- …