35 research outputs found

    Visually Explaining Publication Ranks in Citation-based Literature Search with PURE Suggest

    Get PDF
    Tracing citation links helps retrieve related publications. While most tools only allow the user to follow the citations of a single publication, some approaches support jointly analyzing the citations of a set of publications. Along similar lines, PURE suggest provides a detailed visual explanation of the ranking of suggested publications. The ranking is based on a score that combines citation numbers with keyword matching and is shown as a glyph for each publication. A citation network component references this glyph and visually embeds it into a timeline and cluster visualization

    Visually Abstracting Event Sequences as Double Trees Enriched with Category‐Based Comparison

    Get PDF
    Event sequence visualization aids analysts in many domains to better understand and infer new insights from event data. Analysing behaviour before or after a certain event of interest is a common task in many scenarios. In this paper, we introduce, formally define, and position double trees as a domain-agnostic tree visualization approach for this task. The visualization shows the sequences that led to the event of interest as a tree on the left, and those that followed on the right. Moreover, our approach enables users to create selections based on event attributes to interactively compare the events and sequences along colour-coded categories. We integrate the double tree and category-based comparison into a user interface for event sequence analysis. In three application examples, we show a diverse set of scenarios, covering short and long time spans, non-spatial and spatial events, human and artificial actors, to demonstrate the general applicability of the approach

    Visually Analyzing Topic Change Points in Temporal Text Collections

    Get PDF
    Texts are collected over time and reflect temporal changes in the themes that they cover. While some changes might slowly evolve, other changes abruptly surface as explicit change points. In an application study for a change point extraction method based on a rolling Latent Dirichlet Allocation (LDA), we have developed a visualization approach that allows exploring such change points and related change patterns. Our visualization not only provides an overview of topics, but supports the detailed exploration of temporal developments. The interplay of general topic contents, development, and similarities with detected change points reveals rich insights into different kinds of change patterns. The approach comprises a combination of views including topic timeline representations with detected change points, comparative word clouds, and temporal similarity matrices. In an interactive exploration, these views adapt to selected topics, words, or points in time. We demonstrate the use cases of our approach in an in-depth application example involving statisticians

    Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles

    Get PDF
    We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles

    Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles

    Get PDF
    We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles

    Get PDF
    We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles

    Visually Explaining Publication Ranks in Citation-based Literature Search with PURE Suggest

    No full text
    Tracing citation links helps retrieve related publications. While most tools only allow the user to follow the citations of a single publication, some approaches support jointly analyzing the citations of a set of publications. Along similar lines, PURE suggest provides a detailed visual explanation of the ranking of suggested publications. The ranking is based on a score that combines citation numbers with keyword matching and is shown as a glyph for each publication. A citation network component references this glyph and visually embeds it into a timeline and cluster visualization

    Visually Abstracting Event Sequences as Double Trees Enriched with Category‐Based Comparison

    No full text
    Event sequence visualization aids analysts in many domains to better understand and infer new insights from event data. Analysing behaviour before or after a certain event of interest is a common task in many scenarios. In this paper, we introduce, formally define, and position double trees as a domain-agnostic tree visualization approach for this task. The visualization shows the sequences that led to the event of interest as a tree on the left, and those that followed on the right. Moreover, our approach enables users to create selections based on event attributes to interactively compare the events and sequences along colour-coded categories. We integrate the double tree and category-based comparison into a user interface for event sequence analysis. In three application examples, we show a diverse set of scenarios, covering short and long time spans, non-spatial and spatial events, human and artificial actors, to demonstrate the general applicability of the approach
    corecore