2,808 research outputs found

    Limits on the integration constant of the dark radiation term in Brane Cosmology

    Full text link
    We consider the constraints from primordial Helium abundances on the constant of integration of the dark radiation term of the brane-world generalized Friedmann equation derived from the Randall-Sundrum Single brane model. We found that -- using simple, approximate and semianalytical Method -- that the constant of integration is limited to be between -8.9 and 2.2 which limits the possible contribution from dark radiation term to be approximately between -27% to 7% of the background photon energy density.Comment: 8 page

    Tiny grains shining bright in the gaps of Herbig Ae transitional discs

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement.This work presents a study of two Herbig Ae transitional discs, Oph IRS 48 and HD 169142; which both have reported rings in their dust density distributions. We use Keck-II/NIRC2 adaptive optics imaging observations in the L' filter (3.8 micron) to probe the regions of these discs inwards of ~20AU from the star. We introduce our method for investigating these transitional discs, which takes a forward modelling approach: making a model of the disc (using the Monte Carlo radiative transfer code RADMC), convolving it with point-spread functions of calibrator stars, and comparing the convolved models with the observational data. The disc surface density parameters are explored with a Monte Carlo Markov Chain technique. Our analysis recovers emission from both of the discs interior to the well known optically thick walls, modelled as a ring of emission at ~15AU in Oph IRS 48, and ~7AU for HD 169142, and identifies asymmetries in both discs. Given the brightness of the near-symmetric rings compared to the reported companion candidates, we suggest that the reported companion candidates can be interpreted as slightly asymmetric disc emission or illumination.European Research Council (ERC)Science and Technology Facilities Council Rutherford Fellowshi

    New high-pressure phase of HfTiO4 and ZrTiO4 ceramics

    Full text link
    We studied the high-pressure effects on the crystalline structure of monoclinic HfTiO4 and ZrTiO4. We found that the compressibility of these ceramics is highly non-isotropic, being the b-axis the most compressible one. In addition, the a-axis is found to have a small and negative compressibility. At 2.7 GPa (10.7 GPa) we discovered the onset of an structural phase transition in HfTiO4 (ZrTiO4), coexisting the low- and high-pressure phases in a broad pressure range. The new high-pressure phase has a monoclinic structure which involves an increase in the Ti-O coordination and a collapse of the cell volume. The equation of state for the low-pressure phase is also determined.Comment: 16 pages, 5 figures, 26 references, Article in Pres

    HPV infection and immunochemical detection of cell-cycle markers in verrucous carcinoma of the penis

    Get PDF
    Penile verrucous carcinoma is a rare disease and little is known of its aetiology or pathogenesis. In this study we examined cell-cycle proteins expression and correlation with human papillomavirus infection in a series of 15 pure penile verrucous carcinomas from a single centre. Of 148 penile tumours, 15 (10%) were diagnosed as pure verrucous carcinomas. The expression of the cell-cycle-associated proteins p53, p21, RB, p16INK4A and Ki67 were examined by immunohistochemistry. Human papillomavirus infection was determined by polymerase chain reaction to identify a wide range of virus types. The expression of p16INK4A and Ki67 was significantly lower in verrucous carcinoma than in usual type squamous cell carcinoma, whereas the expression of p53, p21 and RB was not significantly different. p53 showed basal expression in contrast to usual type squamous cell carcinoma. Human papillomavirus infection was present in only 3 out of 13 verrucous carcinomas. Unique low-risk, high-risk and mixed viral infections were observed in each of the three cases. In conclusion, lower levels of p16INK4A and Ki67 expressions differentiate penile verrucous carcinoma from usual type squamous cell carcinoma. The low Ki67 index reflects the slow-growing nature of verrucous tumours. The low level of p16INK4A expression and human papillomavirus detection suggests that penile verrucous carcinoma pathogenesis is unrelated to human papillomavirus infection and the oncogenes and tumour suppressor genes classically altered by virus infection.Peer reviewedFinal Accepted Versio

    Speed of disentanglement in multi-qubit systems under depolarizing channel

    Full text link
    We investigate the speed of disentanglement in the multiqubit systems under the local depolarizing channel, in which each qubit is independently coupled to the environment. We focus on the bipartition entanglement between one qubit and the remaining qubits constituting the system, which is measured by the negativity. For the two-qubit system, the speed for the pure state completely depends on its entanglement. The upper and lower bounds of the speed for arbitrary two-qubit states, and the necessary conditions for a state achieving them, are obtained. For the three-qubit system, we study the speed for pure states, whose entanglement properties can be completely described by five local-unitary-transformation invariants. An analytical expression of the relation between the speed and the invariants is derived. The speed is enhanced by the the three-tangle which is the entanglement among the three qubits, but reduced by the the two-qubit correlations outside of the concurrence. The decay of the negativity can be restrained by the other two negativity with the coequal sense. The unbalance between two qubits can reduce speed of disentanglement of the remaining qubit in the system, even can retrieve the entanglement partially. For the k-qubit systems in an arbitrary superposition of GHZ state and W state, the speed depends almost entirely on the amount of the negativity when k increases to five or six. An alternative quantitative definition for the robustness of entanglement is presented based on the speed of disentanglement, with comparison to the widely studied robustness measured by the critical amount of noise parameter where the entanglement vanishes. In the limit of large number of particles, the alternative robustness of the GHZ-type states is inversely proportional to k, and the one of the W states approaches 1/\sqrt{k}.Comment: 14 pages, 5 figures. to appear in Annals of Physic

    Challenges and prospects of automated disassembly of fuel cells for a circular economy

    Get PDF
    The hydrogen economy is driven by the growing share of renewable energy and electrification of the transportation sector. The essential components of a hydrogen economy are fuel cells and electrolysis systems. The scarcity of the resources to build these components and the negative environmental impact of their mining requires a circular economy. Concerning disassembly, economical, ergonomic, and safety reasons make a higher degree of automation necessary. Our work outlines the challenges and prospects on automated disassembly of fuel cell stacks. This is carried out by summarizing the state-of-the-art approaches in disassembly and conducting manual non-/destructive disassembly experiments of end-of-life fuel cell stacks. Based on that, a chemical and mechanical analysis of the fuel cell components is performed. From this, an automation potential for the disassembly processes is derived and possible disassembly process routes are modeled. Moreover, recommendations are given regarding disassembly system requirements using a morphological box

    Formation mechanism of a nano ring of bismuth cations and mono-lacunary Keggin-type phosphomolybdate

    Get PDF
    A new hetero-bimetallic polyoxometalate (POM) nano ring was synthesized in a one-pot procedure. The structure consists of tetrameric units containing four bismuth-substituted monolacunary Keggin anions including distorted [BiO8] cubes. The nano ring is formed via self -assembly from metal precursors in aqueous acidic medium. The compound (NH4)16[(BiPMo11O39)4]×22H2O; (P4Bi4Mo44) was characterized by single-crystal X-ray diffraction, extended X-ray absorption fine structure spectroscopy (EXAFS), Raman spectroscopy, matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF), and thermogravimetry/differential scanning calorimetry (TG-DSC-MS). The formation of the nano ring in solution was studied by time-resolved in situ small- and wide-angle X-ray scattering (SAXS/WAXS) and in situ EXAFS measurements at the Mo-K and the Bi-L3 edge indicating a two-step process consisting of condensation of Mo-anions and formation of Bi-Mo-units followed by a rapid self-assembly to yield the final tetrameric ring structure

    The California-Kepler survey. X. The radius gap as a function of stellar mass, metallicity, and age

    Get PDF
    In 2017, the California-Kepler Survey (CKS) published its first data release (DR1) of high-resolution optical spectra of 1305 planet hosts. Refined CKS planet radii revealed that small planets are bifurcated into two distinct populations, super-Earths (smaller than 1.5 R⊕) and sub-Neptunes (between 2.0 and 4.0 R⊕), with few planets in between (the "radius gap"). Several theoretical models of the radius gap predict variation with stellar mass, but testing these predictions is challenging with CKS DR1 due to its limited M⋆ range of 0.8–1.4 M⊙. Here we present CKS DR2 with 411 additional spectra and derived properties focusing on stars of 0.5–0.8 M⊙. We found that the radius gap follows Rp ∝ Pm with m = −0.10 ± 0.03, consistent with predictions of X-ray and ultraviolet- and core-powered mass-loss mechanisms. We found no evidence that m varies with M⋆. We observed a correlation between the average sub-Neptune size and M⋆. Over 0.5–1.4 M⊙, the average sub-Neptune grows from 2.1 to 2.6 R⊕, following Rp∝M⋆α{R}_{p}\propto {M}_{\star }^{\alpha } with α = 0.25 ± 0.03. In contrast, there is no detectable change for super-Earths. These M⋆–Rp trends suggest that protoplanetary disks can efficiently produce cores up to a threshold mass of Mc, which grows linearly with stellar mass according to Mc ≈ 10 M⊕(M⋆/M⊙). There is no significant correlation between sub-Neptune size and stellar metallicity (over −0.5 to +0.5 dex), suggesting a weak relationship between planet envelope opacity and stellar metallicity. Finally, there is no significant variation in sub-Neptune size with stellar age (over 1–10 Gyr), which suggests that the majority of envelope contraction concludes after ∌1 Gyr

    Continuous-wave room-temperature diamond maser

    Get PDF
    The maser, older sibling of the laser, has been confined to relative obscurity due to its reliance on cryogenic refrigeration and high-vacuum systems. Despite this it has found application in deep-space communications and radio astronomy due to its unparalleled performance as a low-noise amplifier and oscillator. The recent demonstration of a room-temperature solid- state maser exploiting photo-excited triplet states in organic pentacene molecules paves the way for a new class of maser that could find applications in medicine, security and sensing, taking advantage of its sensitivity and low noise. However, to date, only pulsed operation has been observed in this system. Furthermore, organic maser molecules have poor thermal and mechanical properties, and their triplet sub-level decay rates make continuous emission challenging: alternative materials are therefore required. Therefore, inorganic materials containing spin-defects such as diamond and silicon carbide have been proposed. Here we report a continuous-wave (CW) room-temperature maser oscillator using optically pumped charged nitrogen-vacancy (NV) defect centres in diamond. This demonstration unlocks the potential of room-temperature solid-state masers for use in a new generation of microwave devices.Comment: 7 pages, 4 figure

    A solid state light-matter interface at the single photon level

    Full text link
    Coherent and reversible mapping of quantum information between light and matter is an important experimental challenge in quantum information science. In particular, it is a decisive milestone for the implementation of quantum networks and quantum repeaters. So far, quantum interfaces between light and atoms have been demonstrated with atomic gases, and with single trapped atoms in cavities. Here we demonstrate the coherent and reversible mapping of a light field with less than one photon per pulse onto an ensemble of 10 millions atoms naturally trapped in a solid. This is achieved by coherently absorbing the light field in a suitably prepared solid state atomic medium. The state of the light is mapped onto collective atomic excitations on an optical transition and stored for a pre-programmed time up of to 1 mu s before being released in a well defined spatio-temporal mode as a result of a collective interference. The coherence of the process is verified by performing an interference experiment with two stored weak pulses with a variable phase relation. Visibilities of more than 95% are obtained, which demonstrates the high coherence of the mapping process at the single photon level. In addition, we show experimentally that our interface allows one to store and retrieve light fields in multiple temporal modes. Our results represent the first observation of collective enhancement at the single photon level in a solid and open the way to multimode solid state quantum memories as a promising alternative to atomic gases.Comment: 5 pages, 5 figures, version submitted on June 27 200
    • 

    corecore