108 research outputs found
Molecular Recognition: How Photosynthesis Anchors the Mobile Antenna.
True to its name, light-harvesting complex II (LHC II) harvests light energy for photosystem II (PS II). However, LHC II can stray, harvesting light energy for photosystem I (PS I) instead. Cryo-electron microscopy (cryo-EM) now shows how this mobile antenna becomes so attached to its new partner
Oligomeric states in sodium ion-dependent regulation of cyanobacterial histidine kinase-2
Two-component signal transduction systems (TCSs) consist of sensor histidine kinases and response regulators. TCSs mediate adaptation to environmental changes in bacteria, plants, fungi and protists. Histidine kinase 2 (Hik2) is a sensor histidine kinase found in all known cyanobacteria and as chloroplast sensor kinase in eukaryotic algae and plants. Sodium ions have been shown to inhibit the autophosphorylation activity of Hik2 with precedes phosphoryl transfer to response regulators, but the mechanism of inhibition has not been determined. We report on the mechanism of Hik2 activation and inactivation probed by chemical cross-linking and size exclusion chromatography together with direct visualisation of the kinase using negative-stain transmission electron microscopy of single particles. We show that the functional form of Hik2 is a higher-order oligomer such as a hexamer or octamer. Increased NaCl concentration converts the active hexamer into an inactive tetramer. The action of NaCl appears to be confined to the Hik2 kinase domain
The involvement of type IV pili and the phytochrome CphA in gliding motility, lateral motility and photophobotaxis of the cyanobacterium Phormidium lacuna
Phormidium lacuna is a naturally competent, filamentous cyanobacterium that belongs to the order Oscillatoriales. The filaments are motile on agar and other surfaces and display rapid lateral movements in liquid culture. Furthermore, they exhibit a photophobotactic response, a phototactic response towards light that is projected vertically onto the area covered by the culture. However, the molecular mechanisms underlying these phenomena are unclear. We performed the first molecular studies on the motility of an Oscillatoriales member. We generated mutants in which a kanamycin resistance cassette (KanR) was integrated in the phytochrome gene cphA and in various genes of the type IV pilin apparatus. pilM, pilN, pilQ and pilT mutants were defective in gliding motility, lateral movements and photophobotaxis, indicating that type IV pili are involved in all three kinds of motility. pilB mutants were only partially blocked in terms of their responses. pilB is the proposed ATPase for expelling of the filament in type IV pili. The genome reveals proteins sharing weak pilB homology in the ATPase region, these might explain the incomplete phenotype. The cphA mutant revealed a significantly reduced photophobotactic response towards red light. Therefore, our results imply that CphA acts as one of several photophobotaxis photoreceptors or that it could modulate the photophobotaxis response
Phytochrome Mediated Responses in Agrobacterium fabrum: Growth, Motility and Plant Infection
The soil bacterium and plant pathogen Agrobacterium fabrum C58 has two phytochrome photoreceptors, Agp1 and Agp2. We found that plant infection and tumor induction by A. fabrum is down-regulated by light and that phytochrome knockout mutants of A. fabrum have diminished infection rates. The regulation pattern of infection matches with that of bacterial conjugation reported earlier, suggesting similar regulatory mechanisms. In the regulation of conjugation and plant infection, phytochromes are active in darkness. This is a major difference to plant phytochromes, which are typically active after irradiation. We also found that propagation and motility were affected in agp1− and agp2− knockout mutants, although propagation was not always affected by light. The regulatory patterns can partially but not completely be explained by modulated histidine kinase activities of Agp1 and Agp2. In a mass spectrometry-based proteomic study, 24 proteins were different between light and dark grown A. fabrum, whereas 382 proteins differed between wild type and phytochrome knockout mutants, pointing again to light independent roles of Agp1 and Agp2
Interpreting the Wide Scattering of Synchronized Traffic Data by Time Gap Statistics
Based on the statistical evaluation of experimental single-vehicle data, we
propose a quantitative interpretation of the erratic scattering of flow-density
data in synchronized traffic flows. A correlation analysis suggests that the
dynamical flow-density data are well compatible with the so-called jam line
characterizing fully developed traffic jams, if one takes into account the
variation of their propagation speed due to the large variation of the netto
time gaps (the inhomogeneity of traffic flow). The form of the time gap
distribution depends not only on the density, but also on the measurement cross
section: The most probable netto time gap in congested traffic flow upstream of
a bottleneck is significantly increased compared to uncongested freeway
sections. Moreover, we identify different power-law scaling laws for the
relative variance of netto time gaps as a function of the sampling size. While
the exponent is -1 in free traffic corresponding to statistically independent
time gaps, the exponent is about -2/3 in congested traffic flow because of
correlations between queued vehicles.Comment: For related publications see http://www.helbing.or
Interstellar polarization and grain alignment: the role of iron and silicon
We compiled the polarimetric data for a sample of lines of sight with known
abundances of Mg, Si, and Fe. We correlated the degree of interstellar
polarization and polarization efficiency (the ratio of to the colour
excess or extinction ) with dust phase abundances. We detect an
anticorrelation between and the dust phase abundance of iron in non
silicate - containing grains ]_\rm d, a correlation
between and the abundance of Si, and no correlation between or
and dust phase abundances. These findings can be explained if mainly
the silicate grains aligned by the radiative mechanism are responsible for the
observed interstellar linear polarization.Comment: Accepted for publication in Astronomy and Astrophysic
- …