32 research outputs found

    High-density lipoproteins as modulators of endothelial cell functions: alterations in patients with coronary artery disease

    Get PDF
    Alteration of endothelial cell functions, including reduced endothelial nitric oxide (NO) availability, increased endothelial cell apoptosis, adhesion molecule/chemokine expression and pro-thrombotic activation are thought to contribute to the pathophysiology of atherosclerosis and coronary-artery-disease (CAD) with its clinical complications, such as acute coronary syndromes. High-density lipoproteins (HDL) from healthy subjects or reconstituted HDL have been observed to exert potential direct anti-atherogenic effects by modulating these endothelial cell functions. Importantly, endothelial effects of HDL have now been reported to be highly heterogeneous, and are modulated as part of immune responses. More recently, this has also been observed for HDL of patients with CAD, where HDL becomes potentially pro-inflammatory and endothelial-protective properties are markedly altered. Several mechanisms may lead to these altered endothelial effects of HDL in patients with CAD, including oxidative modification of HDL-associated lipids and proteins, such as apoA-I and paraoxonase-1, and alterations of HDL-proteome. These findings have to be considered with respect to interpretation of recent clinical studies failing to demonstrate reduced cardiovascular events by HDL-cholesterol raising strategies in patients with CAD. Both clinical and genetic studies suggest that HDL-cholesterol levels alone are not a sufficient therapeutic target in patients with CAD. The focus of this review is to summarize the role of HDL onto endothelial homeostasis and to describe recently characterized molecular pathways involved. We highlight how structural and functional modifications of HDL particles in patients with CAD may perturb the physiological homeostasis and lead to a loss of endothelial-protective properties of HDL in patients with CA

    Into the Wild: GWAS Exploration of Non-coding RNAs

    Get PDF
    Genome-wide association studies (GWAS) have proven a fundamental tool to identify common variants associated to complex traits, thus contributing to unveil the genetic components of human disease. Besides, the advent of GWAS contributed to expose unexpected findings that urged to redefine the framework of population genetics. First, loci identified by GWAS had small effect sizes and could only explain a fraction of the predicted heritability of the traits under study. Second, the majority of GWAS hits mapped within non-coding regions (such as intergenic or intronic regions) where new functional RNA species (such as lncRNAs or circRNAs) have started to emerge. Bigger cohorts, meta-analysis and technical improvements in genotyping allowed identification of an increased number of genetic variants associated to coronary artery disease (CAD) and cardiometabolic traits. The challenge remains to infer causal mechanisms by which these variants influence cardiovascular disease development. A tendency to assign potential causal variants preferentially to coding genes close to lead variants contributed to disregard the role of non-coding elements. In recent years, in parallel to an increased knowledge of the non-coding genome, new studies started to characterize disease-associated variants located within non-coding RNA regions. The upcoming of databases integrating single-nucleotide polymorphisms (SNPs) and non-coding RNAs together with novel technologies will hopefully facilitate the discovery of causal non-coding variants associated to disease. This review attempts to summarize the current knowledge of genetic variation within non-coding regions with a focus on long non-coding RNAs that have widespread impact in cardiometabolic diseases

    Into the Wild: GWAS Exploration of Non-coding RNAs

    Get PDF
    Genome-wide association studies (GWAS) have proven a fundamental tool to identify common variants associated to complex traits, thus contributing to unveil the genetic components of human disease. Besides, the advent of GWAS contributed to expose unexpected findings that urged to redefine the framework of population genetics. First, loci identified by GWAS had small effect sizes and could only explain a fraction of the predicted heritability of the traits under study. Second, the majority of GWAS hits mapped within non-coding regions (such as intergenic or intronic regions) where new functional RNA species (such as lncRNAs or circRNAs) have started to emerge. Bigger cohorts, meta-analysis and technical improvements in genotyping allowed identification of an increased number of genetic variants associated to coronary artery disease (CAD) and cardiometabolic traits. The challenge remains to infer causal mechanisms by which these variants influence cardiovascular disease development. A tendency to assign potential causal variants preferentially to coding genes close to lead variants contributed to disregard the role of non-coding elements. In recent years, in parallel to an increased knowledge of the non-coding genome, new studies started to characterize disease-associated variants located within non-coding RNA regions. The upcoming of databases integrating single-nucleotide polymorphisms (SNPs) and non-coding RNAs together with novel technologies will hopefully facilitate the discovery of causal non-coding variants associated to disease. This review attempts to summarize the current knowledge of genetic variation within non-coding regions with a focus on long non-coding RNAs that have widespread impact in cardiometabolic diseases

    LXR-Agonists Regulate ApoM Expression Differentially in Liver and In- testine

    Get PDF
    Abstract: Apolipoprotein M (apoM) has been suggested to play a role in reverse cholesterol transport. Here we studied the influence of liver X-receptor (LXR) agonist on the transcriptional regulation of apoM. Studies were performed in murine liver and intestinal mucosal cells in vivo and in human intestinal Caco-2 cells in vitro. The expression of apoM was analyzed by quantitative real time PCR, and compared to well-established LXR target genes. Mice fed with TO901317 for six days showed a downregulation of apoM and apoAI in the liver to 40 % and 60 % respectively and an upregulation of Cyp7A1 to 280 %. In the small intestine, however, apoM and apoAI were upregulated by 30-60 % and ABCA1 by 250-430 %. In Caco-2 cells TO901317 caused a 60 % upregulation and the natural LXR agonist 22-hydroxycholesterol a 40 % upregulation of apoM. Possible causes for the differential effects in liver and intestine are discussed

    Impact of the Gut Microbiota on Atorvastatin Mediated Effects on Blood Lipids

    Get PDF
    Background and aims: The mechanisms of interindividual variation of lipid regulation by statins, such as the low-density lipoprotein cholesterol (LDL) lowering effects, are not fully understood yet. Here, we used a gut microbiota depleted mouse model to investigate the relation between the gut microbiota and the regulatory property of atorvastatin on blood lipids. Methods: Mice (C57BL/6) with intact gut microbiota or antibiotic induced abiotic mice (ABS) were put on standard chow diet (SCD) or high fat diet (HFD) for six weeks. Atorvastatin (10 mg/kg body weight/day) or a control vehicle were applied per gavage for the last four weeks of dietary treatment. Blood lipids including total cholesterol, very low-density lipoprotein, low-density lipoprotein, high-density lipoprotein and sphingolipids were measured to probe microbiota-dependent effects of atorvastatin. The expression of genes involved in hepatic and intestinal cholesterol metabolism was analyzed with qRT-PCR. The alteration of the microbiota profile was examined using 16S rRNA qPCR in mice with intact gut microbiota. Results: HFD feeding significantly increased total blood cholesterol and LDL levels, as compared to SCD in both mice with intact and depleted gut microbiota. The cholesterol lowering effect of atorvastatin was significantly attenuated in mice with depleted gut microbiota. Moreover, we observed a global shift in the abundance of several sphingolipids upon atorvastatin treatment which was absent in gut microbiota depleted mice. The regulatory effect of atorvastatin on the expression of distinct hepatic and intestinal cholesterol-regulating genes, including Ldlr, Srebp2 and Npc1l1 was altered upon depletion of gut microbiota. In response to HFD feeding, the relative abundance of the bacterial phyla Bacteroidetes decreased, while the abundance of Firmicutes increased. The altered ratio between Firmicutes to Bacteroidetes was partly reversed in HFD fed mice treated with atorvastatin. Conclusions: Our findings support a regulatory impact of atorvastatin on the gut microbial profile and, in turn, demonstrate a crucial role of the gut microbiome for atorvastatin-related effects on blood lipids. These results provide novel insights into potential microbiota-dependent mechanisms of lipid regulation by statins, which may account for variable response to statin treatment

    Large-scale microRNA functional high-throughput screening identifies miR-515-3p and miR-519e-3p as inducers of human cardiomyocyte proliferation

    Get PDF
    Ischemic cardiomyopathy, driven by loss of cardiomyocytes and inadequate proliferative response, persists to be a major global health problem. Using a functional high-throughput screening, we assessed differential proliferative potential of 2019 miRNAs after transient hypoxia by transfecting both miR-inhibitor and miR-mimic libraries in human iPSC-CM. Whereas miR-inhibitors failed to enhance EdU uptake, overexpression of 28 miRNAs substantially induced proliferative activity in hiPSC-CM, with an overrepresentation of miRNAs belonging to the primate-specific C19MC-cluster. Two of these miRNAs, miR-515-3p and miR-519e-3p, increased markers of early and late mitosis, indicative of cell division, and substantially alter signaling pathways relevant for cardiomyocyte proliferation in hiPSC-CM

    Allergy / Prevention of allergy by viruslike nanoparticles (VNP) delivering shielded versions of major allergens in a humanized murine allergy model

    Get PDF
    Background: In highrisk populations, allergenspecific prophylaxis could protect from sensitization and subsequent development of allergic disease. However, such treatment might itself induce sensitization and allergies, thus requiring hypoallergenic vaccine formulations. We here characterized the preventive potential of viruslike nanoparticles (VNP) expressing surfaceexposed or shielded allergens. Methods: Fulllength major mugwort pollen allergen Art v 1 was selectively targeted either to the surface or to the inner side of the lipid bilayer envelope of VNP. Upon biochemical and immunological analysis, their preventive potential was determined in a humanized mouse model of mugwort pollen allergy. Results: Viruslike nanoparticles expressing shielded version of Art v 1, in contrast to those expressing surfaceexposed Art v 1, were hypoallergenic as they hardly induced degranulation of rat basophil leukemia cells sensitized with Art v 1specific mouse or human IgE. Both VNP versions induced proliferation and cytokine production of allergenspecific T cells in vitro. Upon intranasal application in mice, VNP expressing surfaceexposed but not shielded allergen induced allergenspecific antibodies, including IgE. Notably, preventive treatment with VNP expressing shielded allergenprotected mice from subsequent sensitization with mugwort pollen extract. Protection was associated with a Th1/Tregdominated cytokine response, increased Foxp3+ Treg numbers in lungs, and reduced lung resistance when compared to mice treated with empty particles. Conclusion: Viruslike nanoparticles represent a novel and versatile platform for the in vivo delivery of allergens to selectively target T cells and prevent allergies without inducing allergic reactions or allergic sensitization.DKW1248SFB F4605SFB F4609(VLID)313247

    Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants

    Get PDF
    Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks

    Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults

    Get PDF
    Background Underweight and obesity are associated with adverse health outcomes throughout the life course. We estimated the individual and combined prevalence of underweight or thinness and obesity, and their changes, from 1990 to 2022 for adults and school-aged children and adolescents in 200 countries and territories. Methods We used data from 3663 population-based studies with 222 million participants that measured height and weight in representative samples of the general population. We used a Bayesian hierarchical model to estimate trends in the prevalence of different BMI categories, separately for adults (age ≥20 years) and school-aged children and adolescents (age 5–19 years), from 1990 to 2022 for 200 countries and territories. For adults, we report the individual and combined prevalence of underweight (BMI <18·5 kg/m2) and obesity (BMI ≥30 kg/m2). For schoolaged children and adolescents, we report thinness (BMI <2 SD below the median of the WHO growth reference) and obesity (BMI >2 SD above the median). Findings From 1990 to 2022, the combined prevalence of underweight and obesity in adults decreased in 11 countries (6%) for women and 17 (9%) for men with a posterior probability of at least 0·80 that the observed changes were true decreases. The combined prevalence increased in 162 countries (81%) for women and 140 countries (70%) for men with a posterior probability of at least 0·80. In 2022, the combined prevalence of underweight and obesity was highest in island nations in the Caribbean and Polynesia and Micronesia, and countries in the Middle East and north Africa. Obesity prevalence was higher than underweight with posterior probability of at least 0·80 in 177 countries (89%) for women and 145 (73%) for men in 2022, whereas the converse was true in 16 countries (8%) for women, and 39 (20%) for men. From 1990 to 2022, the combined prevalence of thinness and obesity decreased among girls in five countries (3%) and among boys in 15 countries (8%) with a posterior probability of at least 0·80, and increased among girls in 140 countries (70%) and boys in 137 countries (69%) with a posterior probability of at least 0·80. The countries with highest combined prevalence of thinness and obesity in school-aged children and adolescents in 2022 were in Polynesia and Micronesia and the Caribbean for both sexes, and Chile and Qatar for boys. Combined prevalence was also high in some countries in south Asia, such as India and Pakistan, where thinness remained prevalent despite having declined. In 2022, obesity in school-aged children and adolescents was more prevalent than thinness with a posterior probability of at least 0·80 among girls in 133 countries (67%) and boys in 125 countries (63%), whereas the converse was true in 35 countries (18%) and 42 countries (21%), respectively. In almost all countries for both adults and school-aged children and adolescents, the increases in double burden were driven by increases in obesity, and decreases in double burden by declining underweight or thinness. Interpretation The combined burden of underweight and obesity has increased in most countries, driven by an increase in obesity, while underweight and thinness remain prevalent in south Asia and parts of Africa. A healthy nutrition transition that enhances access to nutritious foods is needed to address the remaining burden of underweight while curbing and reversing the increase in obesit

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities . This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity . Here we use 2,009\ua0population-based studies, with measurements of height and weight in more than 112\ua0million adults, to report national, regional and global trends in mean\ua0BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017—and more than 80% in\ua0some low- and middle-income regions—was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities\ua0in low- and middle-income regions. These trends have in turn resulted in a closing—and in some countries reversal—of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories
    corecore