2,881 research outputs found
Charged-Particle and Neutron-Capture Processes in the High-Entropy Wind of Core-Collapse Supernovae
The astrophysical site of the r-process is still uncertain, and a full
exploration of the systematics of this process in terms of its dependence on
nuclear properties from stability to the neutron drip-line within realistic
stellar environments has still to be undertaken. Sufficiently high neutron to
seed ratios can only be obtained either in very neutron-rich low-entropy
environments or moderately neutron-rich high-entropy environments, related to
neutron star mergers (or jets of neutron star matter) and the high-entropy wind
of core-collapse supernova explosions. As chemical evolution models seem to
disfavor neutron star mergers, we focus here on high-entropy environments
characterized by entropy , electron abundance and expansion velocity
. We investigate the termination point of charged-particle reactions,
and we define a maximum entropy for a given and ,
beyond which the seed production of heavy elements fails due to the very small
matter density. We then investigate whether an r-process subsequent to the
charged-particle freeze-out can in principle be understood on the basis of the
classical approach, which assumes a chemical equilibrium between neutron
captures and photodisintegrations, possibly followed by a -flow
equilibrium. In particular, we illustrate how long such a chemical equilibrium
approximation holds, how the freeze-out from such conditions affects the
abundance pattern, and which role the late capture of neutrons originating from
-delayed neutron emission can play.Comment: 52 pages, 31 figure
Closed shells at drip-line nuclei
The shell structure of magic nuclei far from stability is discussed in terms
of the self-consistent spherical Hartree-Fock-Bogoliubov theory. In particular,
the sensitivity of the shell-gap sizes and the two-neutron separation energies
to the choice of particle-hole and particle-particle components of the
effective interaction is investigated.Comment: 19 pages, LaTeX, 8 uuencoded figures available upon reques
The Ubiquity of the Rapid Neutron-Capture Process
To better characterize the abundance patterns produced by the r-process, we
have derived new abundances or upper limits for the heavy elements zinc (Zn),
yttrium (Y), lanthanum (La), europium (Eu), and lead (Pb). Our sample of 161
metal-poor stars includes new measurements from 88 high resolution and high
signal-to-noise spectra obtained with the Tull Spectrograph on the 2.7m Smith
Telescope at McDonald Observatory, and other abundances are adopted from the
literature. We use models of the s-process in AGB stars to characterize the
high Pb/Eu ratios produced in the s-process at low metallicity, and our new
observations then allow us to identify a sample of stars with no detectable
s-process material. In these stars, we find no significant increase in the
Pb/Eu ratios with increasing metallicity. This suggests that s-process material
was not widely dispersed until the overall Galactic metallicity grew
considerably, perhaps even as high as [Fe/H]=-1.4. We identify a dispersion of
at least 0.5 dex in [La/Eu] in metal-poor stars with [Eu/Fe]<+0.6 attributable
to the r-process, suggesting that there is no unique "pure" r-process elemental
ratio among pairs of rare earth elements. We confirm earlier detections of an
anti-correlation between Y/Eu and Eu/Fe bookended by stars strongly enriched in
the r-process (e.g., CS 22892-052) and those with deficiencies of the heavy
elements (e.g., HD 122563). We can reproduce the range of Y/Eu ratios using
simulations of high-entropy neutrino winds of core-collapse supernovae that
include charged-particle and neutron-capture components of r-process
nucleosynthesis. The heavy element abundance patterns in most metal-poor stars
do not resemble that of CS 22892-052, but the presence of heavy elements such
as Ba in nearly all metal-poor stars without s-process enrichment suggests that
the r-process is a common phenomenon.Comment: Accepted for publication in the Astrophysical Journal. 25 pages, 13
figure
Nucleosynthesis Modes in the High-Entropy-Wind of Type II Supernovae: Comparison of Calculations with Halo-Star Observations
While the high-entropy wind (HEW) of Type II supernovae remains one of the
more promising sites for the rapid neutron-capture (r-) process, hydrodynamic
simulations have yet to reproduce the astrophysical conditions under which the
latter occurs. We have performed large-scale network calculations within an
extended parameter range of the HEW, seeking to identify or to constrain the
necessary conditions for a full reproduction of all r-process residuals
N_{r,\odot}=N_{\odot}-N_{s,\odot} by comparing the results with recent
astronomical observations. A superposition of weighted entropy trajectories
results in an excellent reproduction of the overall N_{r,\odot}-pattern beyond
Sn. For the lighter elements, from the Fe-group via Sr-Y-Zr to Ag, our HEW
calculations indicate a transition from the need for clearly different sources
(conditions/sites) to a possible co-production with r-process elements,
provided that a range of entropies are contributing. This explains recent
halo-star observations of a clear non-correlation of Zn and Ge and a weak
correlation of Sr - Zr with heavier r-process elements. Moreover, new
observational data on Ru and Pd seem to confirm also a partial correlation with
Sr as well as the main r-process elements (e.g. Eu).Comment: 15 pages, 1 table, 4 figures; To be published in the Astrophysical
Journal Letter
On three topical aspects of the N=28 isotonic chain
The evolution of single-particle orbits along the N=28 isotonic chain is
studied within the framework of a relativistic mean-field approximation. We
focus on three topical aspects of the N=28 chain: (a) the emergence of a new
magic number at Z=14; (b) the possible erosion of the N=28 shell; and (c) the
weakening of the spin-orbit splitting among low-j neutron orbits. The present
model supports the emergence of a robust Z=14 subshell gap in 48Ca, that
persists as one reaches the neutron-rich isotone 42Si. Yet the proton removal
from 48Ca results in a significant erosion of the N=28 shell in 42Si. Finally,
the removal of s1/2 protons from 48Ca causes a ~50% reduction of the spin-orbit
splitting among neutron p-orbitals in 42Si.Comment: 12 pages with 5 color figure
The End Of Nucleosynthesis: Production Of Lead And Thorium In The Early Galaxy
We examine the Pb and Th abundances in 27 metal-poor stars (-3.1 56) enrichment was produced only by the rapid (r-) nucleosynthesis process. New abundances are derived from Hubble Space Telescope/Space Telescope Imaging Spectrograph, Keck/High Resolution Echelle Spectrograph, and Very Large Telescope/UV-Visual Echelle Spectrograph spectra and combined with other measurements from the literature to form a more complete picture of nucleosynthesis of the heaviest elements produced in the r-process. In all cases, the abundance ratios among the rare earth elements and the third r-process peak elements considered (La, Eu, Er, Hf, and Ir) are constant and equivalent to the scaled solar system r-process abundance distribution. We compare the stellar observations with r-process calculations within the classical "waiting-point" approximation. In these computations a superposition of 15 weighted neutron-density components in the range 23 <= log n(n) <= 30 is fit to the r-process abundance peaks to successfully reproduce both the stable solar system isotopic distribution and the stable heavy element abundance pattern between Ba and U in low-metallicity stars. Under these astrophysical conditions, which are typical of the "main" r-process, we find very good agreement between the stellar Pb r-process abundances and those predicted by our model. For stars with anomalously high Th/Eu ratios (the so-called actinide boost), our observations demonstrate that any nucleosynthetic deviations from the main r-process affect-at most-only the elements beyond the third r-process peak, namely Pb, Th, and U. Our theoretical calculations also indicate that possible r-process abundance "losses" by nuclear fission are negligible for isotopes along the r-process path between Pb and the long-lived radioactive isotopes of Th and U.Deutsche Forschungsgemeinschaft KR 806/13-1Helmholtz Gemeinschaft VH-VI-061U S National Science Foundation AST 07-07447, AST 06-07708Astronom
The additional-mode garden of RR Lyrae stars
Space-based photometric missions revealed a surprising abundance of
millimagnitude-level additional modes in RR Lyrae stars. The modes that appear
in the modulated fundamental-mode (RRab) stars can be ordered into four major
categories. Here we present the distribution of these groups in the Petersen
diagram, and discuss their characteristics and connections to additional modes
observed in other RR Lyrae stars.Comment: 4 pages, 4 figures, proceedings of the Joint
TASC2-KASC9-SPACEINN-HELAS8 Conference "Seismology of the Sun and the Distant
Stars 2016", to be published in EPJ Wo
Relativistic mean field study of the properties of Z=117 nucleus and the decay chains of 117 isotopes
We have calculated the binding energy, root-mean-square radius and quadrupole
deformation parameter for the recently synthesized superheavy element Z=117,
using the axially deformed relativistic mean field (RMF) model. The calculation
is extended to various isotopes of Z=117 element, strarting from A=286 till
A=310. We predict almost spherical structures in the ground state for almost
all the isotopes. A shape transition appears at about A=292 from prolate to a
oblate shape structures of Z=117 nucleus in our mean field approach. The most
stable isotope (largest binding energy per nucleon) is found to be the
117 nucleus. Also, the Q-value of -decay and the
half-lives are calculated for the -decay chains of
117 and 117, supporting the magic numbers at N=172 and/ or 184.Comment: 6 Pages and 8 Figure
- …