437 research outputs found

    Unfolding and unzipping of single-stranded DNA by stretching

    Full text link
    We present a theoretical study of single-stranded DNA under stretching. Within the proposed framework, the effects of basepairing on the mechanical response of the molecule can be studied in combination with an arbitrary underlying model of chain elasticity. In a generic case, we show that the stretching curve of ssDNA exhibits two distinct features: the second-order "unfolding" phase transition, and a sharp crossover, reminiscent of the first-order "unzipping" transition in dsDNA. We apply the theory to the particular cases of Worm-like Chain (WLC) and Freely-Joint Chain (FJC) models, and discuss the universal and model--dependent features of the mechanical response of ssDNA. In particular, we show that variation of the width of the unzipping crossover with interaction strength is very sensitive to the energetics of hairpin loops. This opens a new way of testing the elastic properties of ssDNA.Comment: 7 pages, 4 figures, substantially revised versio

    Getting DNA twist rigidity from single molecule experiments

    Get PDF
    We use an elastic rod model with contact to study the extension versus rotation diagrams of single supercoiled DNA molecules. We reproduce quantitatively the supercoiling response of overtwisted DNA and, using experimental data, we get an estimation of the effective supercoiling radius and of the twist rigidity of B-DNA. We find that unlike the bending rigidity, the twist rigidity of DNA seems to vary widely with the nature and concentration of the salt buffer in which it is immerged

    Balancing torques in membrane-mediated interactions: Exact results and numerical illustrations

    Full text link
    Torques on interfaces can be described by a divergence-free tensor which is fully encoded in the geometry. This tensor consists of two terms, one originating in the couple of the stress, the other capturing an intrinsic contribution due to curvature. In analogy to the description of forces in terms of a stress tensor, the torque on a particle can be expressed as a line integral along any contour surrounding the particle. Interactions between particles mediated by a fluid membrane are studied within this framework. In particular, torque balance places a strong constraint on the shape of the membrane. Symmetric two-particle configurations admit simple analytical expressions which are valid in the fully nonlinear regime; in particular, the problem may be solved exactly in the case of two membrane-bound parallel cylinders. This apparently simple system provides some flavor of the remarkably subtle nonlinear behavior associated with membrane-mediated interactions.Comment: 16 pages, 10 figures, REVTeX4 style. The Gaussian curvature term was included in the membrane Hamiltonian; section II.B was rephrased to smoothen the flow of presentatio

    Novel amino-β-lactam derivatives as potent cholesterol absorption inhibitors

    Get PDF
    Two new trans-(3R, 4R)-amino-β-lactam derivatives and their diastereoisomeric mixtures were synthesized as ezetimibe bioisosteres and tested in in vitro and in vivo experiments as novel β-lactam cholesterol absorption inhibitors. Both compounds exhibited low cytotoxicity in MDCKII, hNPC1L1/MDCKII, and HepG2 cell lines and potent inhibitory effect in hNPC1L1/MDCKII cells. In addition, these compounds markedly reduced cholesterol absorption in mice, resulting in reduced cholesterol concentrations in plasma, liver, and intestine. We determined the crystal structure of one amino-β-lactam derivative to establish unambiguously both the absolute and relative configuration at the new stereogenic centre C17, which was assigned to be S. The pKa values for both compounds are 9.35, implying that the amino-β-lactam derivatives and their diastereoisomeric mixtures are in form of ammonium salt in blood and the intestine. The IC50 value for the diastereoisomeric mixture is 60 μM. In vivo, it efficiently inhibited cholesterol absorption comparable to ezetimibe

    Conformational transitions of heteropolymers in dilute solutions

    Full text link
    In this paper we extend the Gaussian self-consistent method to permit study of the equilibrium and kinetics of conformational transitions for heteropolymers with any given primary sequence. The kinetic equations earlier derived by us are transformed to a form containing only the mean squared distances between pairs of monomers. These equations are further expressed in terms of instantaneous gradients of the variational free energy. The method allowed us to study exhaustively the stability and conformational structure of some periodic and random aperiodic sequences. A typical phase diagram of a fairly long amphiphilic heteropolymer chain is found to contain phases of the extended coil, the homogeneous globule, the micro-phase separated globule, and a large number of frustrated states, which result in conformational phases of the random coil and the frozen globule. We have also found that for a certain class of sequences the frustrated phases are suppressed. The kinetics of folding from the extended coil to the globule proceeds through non-equilibrium states possessing locally compacted, but partially misfolded and frustrated, structure. This results in a rather complicated multistep kinetic process typical of glassy systems.Comment: 15 pages, RevTeX, 20 ps figures, accepted for publication in Phys. Rev.

    Novel role of a triglyceride-synthesizing enzyme:DGAT1 at the crossroad between triglyceride and cholesterol metabolism

    Get PDF
    AbstractAcyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in triacylglycerol (TG) biosynthesis. Here we show that genetic deficiency and pharmacological inhibition of DGAT1 in mice alters cholesterol metabolism. Cholesterol absorption, as assessed by acute cholesterol uptake, was significantly decreased in the small intestine and liver upon DGAT1 deficiency/inhibition. Ablation of DGAT1 in the intestine (I-DGAT1−/−) alone is sufficient to cause these effects. Consequences of I-DGAT1 deficiency phenocopy findings in whole-body DGAT1−/− and DGAT1 inhibitor-treated mice. We show that deficiency/inhibition of DGAT1 affects cholesterol metabolism via reduced chylomicron size and increased trans-intestinal cholesterol excretion. These effects are independent of cholesterol uptake at the apical surface of enterocytes but mediated through altered dietary fatty acid metabolism. Our findings provide insight into a novel role of DGAT1 and identify a pathway by which intestinal DGAT1 deficiency affects whole-body cholesterol homeostasis in mice. Targeting intestinal DGAT1 may represent a novel approach for treating hypercholesterolemia

    The QCD Phase Structure at High Baryon Density

    Get PDF
    We consider the possibility that color deconfinement and chiral symmetry restoration do not coincide in dense baryonic matter at low temperature. As a consequence, a state of massive "constituent" quarks would exist as an intermediate phase between confined nuclear matter and the plasma of deconfined massless quarks and gluons. We discuss the properties of this state and its relation to the recently proposed quarkyonic matter.Comment: 17 pages, 9 figure

    Biological Activity of the Isomeric Forms of Helminthosporium sacchari

    Full text link

    Equation of state for polymer liquid crystals: theory and experiment

    Full text link
    The first part of this paper develops a theory for the free energy of lyotropic polymer nematic liquid crystals. We use a continuum model with macroscopic elastic moduli for a polymer nematic phase. By evaluating the partition function, considering only harmonic fluctuations, we derive an expression for the free energy of the system. We find that the configurational entropic part of the free energy enhances the effective repulsive interactions between the chains. This configurational contribution goes as the fourth root of the direct interactions. Enhancement originates from the coupling between bending fluctuations and the compressibility of the nematic array normal to the average director. In the second part of the paper we use osmotic stress to measure the equation of state for DNA liquid crystals in 0.1M to 1M NaCl solutions. These measurements cover 5 orders of magnitude in DNA osmotic pressure. At high osmotic pressures the equation of state, dominated by exponentially decaying hydration repulsion, is independent of the ionic strength. At lower pressures the equation of state is dominated by fluctuation enhanced electrostatic double layer repulsion. The measured equation of state for DNA fits well with our theory for all salt concentrations. We are able to extract the strength of the direct electrostatic double layer repulsion. This is a new and alternative way of measuring effective charge densities along semiflexible polyelectrolytes.Comment: text + 5 figures. Submitted to PR
    corecore