4 research outputs found

    EPRL/FK Group Field Theory

    Full text link
    The purpose of this short note is to clarify the Group Field Theory vertex and propagators corresponding to the EPRL/FK spin foam models and to detail the subtraction of leading divergences of the model.Comment: 20 pages, 2 figure

    Operator Spin Foam Models

    Full text link
    The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as the main tool. An equivalence relation we impose in the set of the operator spin foams allows to split the faces and the edges of the foams. The consistency with that relation requires introduction of the (familiar for the BF theory) face amplitude. The operator spin foam models are defined quite generally. Imposing a maximal symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with demanding consistency with splitting the edges, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on Spin(4) BF spin foam model is exactly the way we tend to view 4d quantum gravity, starting with the BC model and continuing with the EPRL or FK models. That makes our framework directly applicable to those models. Specifically, our operator spin foam framework can be translated into the language of spin foams and partition functions. We discuss the examples: BF spin foam model, the BC model, and the model obtained by application of our framework to the EPRL intertwiners.Comment: 19 pages, 11 figures, RevTex4.

    Feynman diagrammatic approach to spin foams

    Full text link
    "The Spin Foams for People Without the 3d/4d Imagination" could be an alternative title of our work. We derive spin foams from operator spin network diagrams} we introduce. Our diagrams are the spin network analogy of the Feynman diagrams. Their framework is compatible with the framework of Loop Quantum Gravity. For every operator spin network diagram we construct a corresponding operator spin foam. Admitting all the spin networks of LQG and all possible diagrams leads to a clearly defined large class of operator spin foams. In this way our framework provides a proposal for a class of 2-cell complexes that should be used in the spin foam theories of LQG. Within this class, our diagrams are just equivalent to the spin foams. The advantage, however, in the diagram framework is, that it is self contained, all the amplitudes can be calculated directly from the diagrams without explicit visualization of the corresponding spin foams. The spin network diagram operators and amplitudes are consistently defined on their own. Each diagram encodes all the combinatorial information. We illustrate applications of our diagrams: we introduce a diagram definition of Rovelli's surface amplitudes as well as of the canonical transition amplitudes. Importantly, our operator spin network diagrams are defined in a sufficiently general way to accommodate all the versions of the EPRL or the FK model, as well as other possible models. The diagrams are also compatible with the structure of the LQG Hamiltonian operators, what is an additional advantage. Finally, a scheme for a complete definition of a spin foam theory by declaring a set of interaction vertices emerges from the examples presented at the end of the paper.Comment: 36 pages, 23 figure

    Loop quantum gravity: the first twenty five years

    Full text link
    This is a review paper invited by the journal "Classical ad Quantum Gravity" for a "Cluster Issue" on approaches to quantum gravity. I give a synthetic presentation of loop gravity. I spell-out the aims of the theory and compare the results obtained with the initial hopes that motivated the early interest in this research direction. I give my own perspective on the status of the program and attempt of a critical evaluation of its successes and limits.Comment: 24 pages, 3 figure
    corecore