14 research outputs found

    Synthesis and Application of Triazole Containing Peptidomimetics

    Get PDF
    Kracker O. Synthesis and Application of Triazole Containing Peptidomimetics. Bielefeld: Universität Bielefeld; 2019

    Peptidotriazolamers Inhibit A beta(1-42) Oligomerization and Cross a Blood-Brain-Barrier Model

    Get PDF
    In peptidotriazolamers every second peptide bond is replaced by a 1H-1,2,3-triazole. Such foldamers are expected to bridge the gap in molecular weight between small-molecule drugs and protein-based drugs. Amyloid beta (A beta) aggregates play an important role in Alzheimer's disease. We studied the impact of amide bond replacements by 1,4-disubstituted 1H-1,2,3-triazoles on the inhibitory activity of the aggregation "hot spots" (KLVFF20)-L-16 and G(39)VVIA(42) in A beta(1-42). We found that peptidotriazolamers act as modulators of the A beta(1-42) oligomerization. Some peptidotriazolamers are able to interfere with the formation of toxic early A beta oligomers, depending on the position of the triazoles, which is also supported by computational studies. Preliminary in vitro results demonstrate that a highly active peptidotriazolamer is also able to cross the blood-brain-barrier.Peer reviewe

    1,4-Disubstituted 1H-1,2,3-Triazole Containing Peptidotriazolamers: A New Class of Peptidomimetics With Interesting Foldamer Properties

    Get PDF
    Schröder DC, Kracker O, Fröhr T, et al. 1,4-Disubstituted 1H-1,2,3-Triazole Containing Peptidotriazolamers: A New Class of Peptidomimetics With Interesting Foldamer Properties. Frontiers in Chemistry. 2019;7: 155.Peptidotriazolamers are hybrid foldamers with features of peptides and triazolamers, containing alternation of amide bonds and 1,4-disubstituted 1H-1,2,3-triazoles with conservation of the amino acid side chains. We report on the synthesis of a new class of peptidomimetics, containing 1,4-disubstituted 1H-1,2,3-triazoles in alternation with amide bonds and the elucidation of their conformational properties in solution. Based on enantiomerically pure propargylamines bearing the stereogenic center in the propargylic position and α-azido esters, building blocks were obtained by copper-catalyzed azide-alkyne cycloaddition. With these building blocks the peptidotriazolamers were readily available by solution phase synthesis. A panel of homo- and heterochiral tetramers, hexamers, and heptamers was synthesized and the heptamer Boc-Ala-Val-Ψ[4Tz]Phe-LeuΨ[4Tz]Phe-LeuΨ[4Tz]Val-OAll as well as an heterochiral and a Gly-containing equivalent were structurally characterized by NMR-based molecular dynamics simulations using a specifically tailored force field to determine their conformational and solvation properties. All three variants adopt a compact folded conformation in DMSO as well as in water. In addition to the heptamers we predicted the conformational behavior of similar longer oligomers i.e., Boc-Ala-(AlaΨ[4Tz]Ala)6-OAll as well as Boc-Ala-(d-AlaΨ[4Tz]Ala)6-OAll and Boc-Ala-(GlyΨ[4Tz]Ala)6-OAll. Our calculations predict a clear secondary structure of the first two molecules in DMSO that collapses in water due to the hydrophobic character of the side chains. The homochiral compound folds into a regular helical structure and the heterochiral one shows a twisted “S”-shape, while the Gly variant exhibits no clear secondary structure

    1,5-DISUBSTITUTED 1,2,3-TRIAZOLES AS READILY AVAILABLE CIS-AMIDE BOND MIMICS FOR BENT AND CYCLIC PEPTIDOMIMETICS

    No full text
    Kracker O, Sewald N. 1,5-DISUBSTITUTED 1,2,3-TRIAZOLES AS READILY AVAILABLE CIS-AMIDE BOND MIMICS FOR BENT AND CYCLIC PEPTIDOMIMETICS. In: JOURNAL OF PEPTIDE SCIENCE. Vol 22. Wiley; 2016: S132

    Amber-Compatible Parametrization Procedure for Peptide-like Compounds: Application to 1,4- and 1,5-Substituted Triazole-Based Peptidomimetics

    No full text
    Peptidomimetics are molecules of particular interest in the context of drug design and development. They are proteolytically and metabolically more stable than their natural peptide counterparts but still offer high specificity toward their biological targets. In recent years, 1,4- and 1,5-disubstituted 1,2,3-triazole-based peptidomimetics have emerged as promising lead compounds for the design of various inhibitory and tumor-targeting molecules as well as for the synthesis of peptide analogues. The growing popularity of triazole-based peptidomimetics and a constantly broadening range of their application generated a demand for elaborate theoretical investigations by classical molecular dynamics simulations and molecular docking. Despite this rising interest, accurate and coherent force field parameters for triazole-based peptidomimetics are still lacking. Here, we report the first complete set of parameters dedicated to this group of compounds, named TZLff. This parametrization is compatible with the latest version of the AMBER force field (ff14SB) and can be readily applied for the modeling of pure triazole-based peptidomimetics as well as natural peptide sequences containing one or more triazole-based modifications in their backbone. The parameters were optimized to reproduce HF/6-31G* electrostatic potentials as well as MP2/cc-pVTZ equilibrium Hessian matrices and conformational potential energy surfaces through the use of a genetic algorithm-based search and least-squares fitting. Following the standards of AMBER, we introduce residue building units, thus allowing the user to define any given sequence of triazole-based peptidomimetics. Validation of the parameter set against ab initio- and NMR-based reference systems shows that we obtain fairly accurate results, which properly capture the conformational features of triazole-based peptidomimetics. The successful and efficient parametrization strategy developed in this work is general enough to be applied in a straightforward manner for parametrization of other peptidomimetics and, potentially, any polymeric assemblies

    1,5-Disubstituted 1,2,3-Triazole-Containing Peptidotriazolamers: Design Principles for a Class of Versatile Peptidomimetics

    No full text
    Kracker O, Gora J, Krzciuk-Gula J, et al. 1,5-Disubstituted 1,2,3-Triazole-Containing Peptidotriazolamers: Design Principles for a Class of Versatile Peptidomimetics. Chemistry - A European Journal. 2018;24(4):953-961.Peptidotriazolamers are hybrid foldamers combining features of peptides and triazolamers-repetitive peptidomimetic structures with triazoles replacing peptide bonds. We report on the synthesis of a new class of peptidomimetics, containing 1,5-disubstituted 1,2,3-triazoles in an alternating fashion with amide bonds and the analysis of their conformation in solid state and solution. Homo-or heterochiral peptidotriazolamers were obtained from enantiomerically pure propargylamines with stereogenic centers in the prop-argylic position and alpha-azido esters by ruthenium-catalyzed azide-alkyne cycloaddition (RuAAC) under microwave conditions in high yields. With such building blocks the peptidotriazolamers are readily available by solution phase synthesis. While the conformation of the homochiral peptidotriazolamer Boc-Ala[5Tz] Phe-Val[5Tz] Ala-Leu[5Tz] Val-OBzl resembles that of a beta VIa1 turn, the heterochiral peptidotriazolamer Boc- D-Ala[5Tz] Phe-D-Val[5Tz] Ala-d-Leu[5Tz] Val-OBzl adopts a polyproline-like repetitive structure

    Multicenter, Double-Blind, Randomized, Phase 2 Study Evaluating the Novel Antibiotic Cadazolid in Patients with Clostridium difficile Infection

    No full text
    Cadazolid, a novel fluoroquinolone-oxazolidinone antibiotic, exhibits potent in vitro activity against Clostridium difficile, including the epidemic BI/NAP1/027 strain. This multicenter, randomized, double-blind, active reference group, phase 2 study evaluated the efficacy and safety of oral cadazolid in treatment of adult patients with C. difficile infection (CDI). Eligible patients with first occurrence/first recurrence of CDI were randomized 1:1:1:1 to 250, 500, or 1,000 mg cadazolid twice daily (BID) or oral 125 mg vancomycin four times daily (QID) for 10 days. The primary endpoint was clinical cure at test of cure (48 +/- 24 h after the end of treatment; modified intent-to-treat population), defined as resolution of diarrhea with no further CDI treatment required. Secondary endpoints included recurrence rate, sustained clinical response (clinical cure without recurrence), and time to diarrhea resolution. Of 84 patients enrolled, 20, 22, 20, and 22 received 250, 500, or 1,000 mg cadazolid BID or 125 mg vancomycin QID, respectively. The primary endpoint was achieved in 76.5% (80% confidence interval [CI], 58.4, 89.3), 80.0% (63.9, 91.0), 68.4% (51.1, 82.5), and 68.2% (52.3, 81.3) of patients, respectively. There was no evidence of a cadazolid dosage-dependent response. Each dosage of cadazolid resulted in a lower recurrence rate than with vancomycin (18.2 to 25.0% versus 50%). Consequently, higher sustained clinical response rates were observed with cadazolid (46.7 to 60.0%) than with vancomycin (33.3%). The times to diarrhea resolution were similar for cadazolid and vancomycin. Cadazolid was well tolerated, with no safety signal observed. The results of this phase 2 study support further clinical development of cadazolid. (This study has been registered in the United States at ClinicalTrials.gov under registration no. NCT01222702 and in Europe with the European Medicines Agency under registration no. EUDRA-CT 2010-020941-29.

    1,4-Disubstituted 1H-1,2,3-Triazole Containing Peptidotriazolamers: A New Class of Peptidomimetics With Interesting Foldamer Properties

    Get PDF
    Peptidotriazolamers are hybrid foldamers with features of peptides and triazolamers, containing alternation of amide bonds and 1,4-dlsubstltuted 1H-1,2,3-triazoles with conservation of the amino acid side chains. We report on the synthesis of a new class of peptidomimetics, containing 1,4-disubstituted 1H-1,2,3-triazoles in alternation with amide bonds and the elucidation of their conformational properties in solution. Based on enantiomerically pure propargylamines bearing the stereogenic center in the propargylic position and a-azido esters, building blocks were obtained by copper-catalyzed azide-alkyne cycloaddition. With these building blocks the peptidotriazolamers were readily available by solution phase synthesis. A panel of homo- and heterochiral tetramers, hexamers, and heptamers was synthesized and the heptamer Boc-Ala-Val-Psi[4Tz]Phe-Leu Psi[4Tz]Phe-Leu Psi[4Tz]Val-OAll as well as an heterochiral and a Gly-containing equivalent were structurally characterized by NMR-based molecular dynamics simulations using a specifically tailored force field to determine their conformational and solvation properties. All three variants adopt a compact folded conformation in DMSO as well as in water. In addition to the heptamers we predicted the conformational behavior of similar longer oligomers i.e., Boc-Ala-(Ala Psi[4Tz]Ala)(6)-OAll as well as Boc-Ala-(D-Ala Psi[4Tz]Ala)(6)-OAll and Boc-Ala-(Gly Psi[4Tz]Ala)(6)-OAll. Our calculations predict a clear secondary structure of the first two molecules in DMSO that collapses in water due to the hydrophobic character of the side chains. The homochiral compound folds into a regular helical structure and the heterochiral one shows a twisted "S"-shape, while the Gly variant exhibits no clear secondary structure

    Peptidotriazolamers Inhibit Abeta(1-42) Oligomerization and Cross a Blood-Brain-Barrier Model

    No full text
    Tonali NM, Hericks L, Schröder DC, et al. Peptidotriazolamers Inhibit Abeta(1-42) Oligomerization and Cross a Blood-Brain-Barrier Model. ChemPlusChem. 2021;86(6):840-851.In peptidotriazolamers every second peptide bond is replaced by a 1H-1,2,3-triazole. Such foldamers are expected to bridge the gap in molecular weight between small-molecule drugs and protein-based drugs. Amyloid beta (Abeta) aggregates play an important role in Alzheimer's disease. We studied the impact of amide bond replacements by 1,4-disubstituted 1H-1,2,3-triazoles on the inhibitory activity of the aggregation "hot spots" K16 LVFF20 and G39 VVIA42 in Abeta(1-42). We found that peptidotriazolamers act as modulators of the Abeta(1-42) oligomerization. Some peptidotriazolamers are able to interfere with the formation of toxic early Abeta oligomers, depending on the position of the triazoles, which is also supported by computational studies. Preliminary in vitro results demonstrate that a highly active peptidotriazolamer is also able to cross the blood-brain-barrier. © 2021 The Authors. ChemPlusChem published by Wiley-VCH GmbH
    corecore