172 research outputs found
Observation of Spin Flips with a Single Trapped Proton
Radio-frequency induced spin transitions of one individual proton are
observed for the first time. The spin quantum jumps are detected via the
continuous Stern-Gerlach effect, which is used in an experiment with a single
proton stored in a cryogenic Penning trap. This is an important milestone
towards a direct high-precision measurement of the magnetic moment of the
proton and a new test of the matter-antimatter symmetry in the baryon sector
A educação entre os Parintintim: temos muito a aprender com eles
Doutor em Antropologia e professor da Universidade de Illinois em Chicago,Waud H. Kracke colabora com a revista Comunicação & Educação com um relato sobre a educação entre os Parintintim. De carĂĄter mais etnogrĂĄfico do que de ensaio teĂłrico, neste trabalho o autor coloca importantes questĂ”es sobre a educação entre os povos indĂgenas brasileiros e o que temos a aprender com eles. Reflete sobre a importĂąncia do olhar no aprendizadoe sobre os processos de transmissĂŁo oral. Os Parintintim nĂŁo separam ensino prĂĄtico do teĂłrico e o conteĂșdo daquilo que aprendem estĂĄ intimamente relacionado com os valores a partir dos quais se organiza a sua sociedade. Entre eles, a colaboração Ă© mais valorizada do que a competitividade
Resolution of Single Spin-Flips of a Single Proton
The spin magnetic moment of a single proton in a cryogenic Penning trap was
coupled to the particle's axial motion with a superimposed magnetic bottle.
Jumps in the oscillation frequency indicate spin-flips and were identified
using a Bayesian analysis.Comment: accepted for publication by Phys. Rev. Lett., submitted 6.June.201
Um mundo em movimento: os Parintintin
O mundo Parintintin Ă© um mundo em movimento: os grupos locais deslocam-se constantemente. Durante a Ă©poca das chuvas, as famĂlias de um grupo local se espalham para o centro - para dentro da mata, rio acima, para tirar sorva, caçar e fugir das enchentes. Antes do contato, um aldeamento poderia permanecer em um determinado local por um perĂodo entre cinco a dez anos, conforme a disponibilidade de recursos nele existentes. A presença de Postos do Serviço de Proteção aos Ăndios-SPI e da Fundação Nacional do Ăndio-FUNAI, com suas escolas e farmĂĄcias, assim como a necessidade de estar prĂłximo aos centros comerciais para vender e comprar produtos, fez com que alguns aldeamentos fossem sedentarizados. Mesmo assim, observa-se que, por diferentes motivos, grupos ou indivĂduos deslocam- se de uma localidade para outra com certa regularidade
Metabolic Network Analysis of Microbial Methane Utilization for Biomass Formation and Upgrading to Bio-Fuels
The potent greenhouse gas methane presents a widely accessible resource, being the primary component in natural gas as well as in bio-gas from anaerobic digesters. Given its relatively low heating-value and several issues concerning its storage and transportation, methane upgrading to liquid fuels is of particular interest. Microbial methane conversion/utilization and upgrading is gaining increasing interest due to its high conversion efficiency. In this study we computationally compare aerobic and anaerobic microbial pathways for CH4-oxidation and discuss theoretically achievable biomass yields as well as the possibility for building synthetic biological production platforms for liquid fuels. Specifically, the presented in-silico work investigates the potential of microbial methane upgrading in a metabolic network analysis by means of elementary flux modes. Aerobic fixation of methane via conversion of methane to methanol by a methane monooxygenase (MMO) and different subsequent formaldehyde assimilation pathways (Serine-cycle, RuMP, XMP/DHA-pathway) is compared with anaerobic pathways for oxidation of methane (AOM) by means of reverse-methanogenesis or via a presumed glycyl-radical enzyme, which uses fumarate for activation of methane. The different pathways for aerobic and anaerobic methane oxidation are compared in different central carbon-metabolism envelopes in order to identify highest achievable carbon yields. The capability of efficient CO2 fixation, as well as energy preservation in form of reducing equivalents is identified as crucial to enable high yields, which ranged from 22 100%. The potential of the different microbes to grow on these gas streams is assessed by means of the maximum achievable biomass yield and the CO2/CH4 uptake ratio. CO2 co-utilization, by transferring reducing power between the two co-substrates, is highest, when combining reverse-methanogenesis with the Wood-Ljungdahl pathway, effectively replacing the need for H2 with CH4. Further, the possibility to upgrade methane into liquid (drop-in) bio-fuels is investigated. Established routes to methanol, ethanol, C4-alcoholes and farnesene are evaluated in the most promising substrate-pathway/organism combinations. Stoichiometric, thermodynamic and kinetic limitations are assessed and recommendations regarding potential industrial feasibility are given. The results presented here should guide future research efforts in search for feasible ways of (co)utilizing novel carbon substrates for sustainable production of fuels and chemicals
Demonstration of the Double Penning Trap Technique with a Single Proton
Spin flips of a single proton were driven in a Penning trap with a
homogeneous magnetic field. For the spin-state analysis the proton was
transported into a second Penning trap with a superimposed magnetic bottle, and
the continuous Stern-Gerlach effect was applied. This first demonstration of
the double Penning trap technique with a single proton suggests that the
antiproton magnetic moment measurement can potentially be improved by three
orders of magnitude or more
Calculation of electrostatic fields using quasi-Green's functions: application to the hybrid Penning trap.
Penning traps offer unique possibilities for storing, manipulating and investigating charged particles with high sensitivity and accuracy. The widespread applications of Penning traps in physics and chemistry comprise e.g. mass spectrometry, laser spectroscopy, measurements of electronic and nuclear magnetic moments, chemical sample analysis and reaction studies. We have developed a method, based on the Green's function approach, which allows for the analytical calculation of the electrostatic properties of a Penning trap with arbitrary electrodes. The ansatz features an extension of Dirichlet's problem to nontrivial geometries and leads to an analytical solution of the Laplace equation. As an example we discuss the toroidal hybrid Penning trap designed for our planned measurements of the magnetic moment of the (anti)proton. As in the case of cylindrical Penning traps, it is possible to optimize the properties of the electric trapping fields, which is mandatory for high-precision experiments with single charged particles. Of particular interest are the anharmonicity compensation, orthogonality and optimum adjustment of frequency shifts by the continuous SternGerlach effect in a quantum jump spectrometer. The mathematical formalism developed goes beyond the mere design of novel Penning traps and has potential applications in other fields of physics and engineering
Direct high-precision measurement of the magnetic moment of the proton
The spin-magnetic moment of the proton is a fundamental property of
this particle. So far has only been measured indirectly, analysing the
spectrum of an atomic hydrogen maser in a magnetic field. Here, we report the
direct high-precision measurement of the magnetic moment of a single proton
using the double Penning-trap technique. We drive proton-spin quantum jumps by
a magnetic radio-frequency field in a Penning trap with a homogeneous magnetic
field. The induced spin-transitions are detected in a second trap with a strong
superimposed magnetic inhomogeneity. This enables the measurement of the
spin-flip probability as a function of the drive frequency. In each measurement
the proton's cyclotron frequency is used to determine the magnetic field of the
trap. From the normalized resonance curve, we extract the particle's magnetic
moment in units of the nuclear magneton . This
measurement outperforms previous Penning trap measurements in terms of
precision by a factor of about 760. It improves the precision of the forty year
old indirect measurement, in which significant theoretical bound state
corrections were required to obtain , by a factor of 3. By application
of this method to the antiproton magnetic moment the fractional
precision of the recently reported value can be improved by a factor of at
least 1000. Combined with the present result, this will provide a stringent
test of matter/antimatter symmetry with baryons.Comment: published in Natur
The magnetic moments of the proton and the antiproton
Recent exciting progress in the preparation and manipulation of the motional
quantum states of a single trapped proton enabled the first direct detection of
the particle's spin state. Based on this success the proton magnetic moment
was measured with ppm precision in a Penning trap with a superimposed
magnetic field inhomogeneity. An improvement by an additional factor of 1000 in
precision is possible by application of the so-called double Penning trap
technique. In a recent paper we reported the first demonstration of this method
with a single trapped proton, which is a major step towards the first direct
high-precision measurement of . The techniques required for the proton
can be directly applied to measure the antiproton magnetic moment
. An improvement in precision of by more than
three orders of magnitude becomes possible, which will provide one of the most
sensitive tests of CPT invariance. To achieve this research goal we are
currently setting up the Baryon Antibaryon Symmetry Experiment (BASE) at the
antiproton decelerator (AD) of CERN
- âŠ