36 research outputs found

    Energy Efficient Heart Rate Sensing using a Painted Electrode ECG Wearable

    Get PDF
    © 2017 IEEE. Many countries are facing burdens on their health care systems due to ageing populations. A promising strategy to address the problem is to allow selected people to remain in their homes and be monitored using recent advances in wearable devices, saving in-hospital resources. With respect to heart monitoring, wearable devices to date have principally used optical techniques by shining light through the skin. However, these techniques are severely hampered by motion artifacts and are limited to heart rate detection. Further, these optical devices consume a large amount of power in order to receive a sufficient signal, resulting in the need for frequent battery recharging. To address these shortcomings we present a new wrist ECG wearable that is similar to the clinical approach for heart monitoring. Our device weighs less than 30 g, and is ultra low power, extending the battery lifetime to over a month to make the device more appropriate for in-home health care applications. The device uses two electrodes activated by the user to measure the voltage across the wrists. The electrodes are made from a flexible ink and can be painted on to the device casing, making it adaptable for different shapes and users. In this paper we show how the ECG sensor can be integrated into an existing IoT wearable and compare the device\u27s accuracy against other common commercial devices

    Flexible 3D-Printed EEG Electrodes

    Get PDF
    For electroencephalography (EEG) in haired regions of the head, finger-based electrodes have been proposed in order to part the hair and make a direct contact with the scalp. Previous work has demonstrated 3D-printed fingered electrodes to allow personalisation and different configurations of electrodes to be used for different people or for different parts of the head. This paper presents flexible 3D-printed EEG electrodes for the first time. A flexible 3D printing element is now used, with three different base mechanical structures giving differently-shaped electrodes. To obtain improved sensing performance, the silver coatings used previously have been replaced with a silver/silver-chloride coating. This results in reduced electrode contact impedance and reduced contact noise. Detailed electro-mechanical testing is presented to demonstrate the performance of the operation of the new electrodes, particularly with regards to changes in conductivity under compression, together with on-person tests to demonstrate the recording of EEG signals

    Experiences with workflows for automating data-intensive bioinformatics

    Get PDF
    High-throughput technologies, such as next-generation sequencing, have turned molecular biology into a data-intensive discipline, requiring bioinformaticians to use high-performance computing resources and carry out data management and analysis tasks on large scale. Workflow systems can be useful to simplify construction of analysis pipelines that automate tasks, support reproducibility and provide measures for fault-tolerance. However, workflow systems can incur significant development and administration overhead so bioinformatics pipelines are often still built without them. We present the experiences with workflows and workflow systems within the bioinformatics community participating in a series of hackathons and workshops of the EU COST action SeqAhead. The organizations are working on similar problems, but we have addressed them with different strategies and solutions. This fragmentation of efforts is inefficient and leads to redundant and incompatible solutions. Based on our experiences we define a set of recommendations for future systems to enable efficient yet simple bioinformatics workflow construction and execution.Pubblicat

    Application of Machine Learning Models in Error and Variant Detection in High-Variation Genomics Datasets

    No full text
    For metagenomics datasets, datasets of complex polyploid genomes, and other high-variation genomics datasets, there are difficulties with the analysis, error detection and variant calling, stemming from the challenges of discerning sequencing errors from biological variation. Confirming base candidates with high frequency of occurrence is no longer a reliable measure because of the natural variation and the presence of rare bases. The paper discusses an approach to the application of machine learning models to classify bases into erroneous and rare variations after preselecting potential error candidates with a weighted frequency measure, which aims to focus on unexpected variations by using the inter-sequence pairwise similarity. Different similarity measures are used to account for different types of datasets. Four machine learning models are implemented and tested

    A Semi-Automated Approach for Anatomical Ontology Mapping

    No full text
    This paper presents a study in the domain of semi-automated and fully-automated ontology mapping. A process for inferring additional cross-ontology links within the domain of anatomical ontologies is presented and evaluated on pairs from three model organisms. The results of experiments performed with various external knowledge sources and scoring schemes are discussed

    In silico Prediction of C4-related Genes by Finding Duplications Causing Pattern Deviation and Comparative Analysis of Phylogenetic Trees

    Get PDF
    This study is focused on the development of a pattern-finding method for analyzing evolutionary trees to predict genes that may be involved in C4 photosynthesis. It relies on publicly available phylogenetic data which is processed with the authors’ own Python scripts and opensource software. The pattern recognition in the topology of the trees is an essential part of the process and the result is then validated by comparing the expression levels of the selected candidates. The same approach can be applied in studying the evolution of other important traits just by changing the type of pattern
    corecore