8 research outputs found
Pharmaceuticals and personal care products in the environment: What are the big questions?
Background: Over the past 10-15 years, a substantial amount of work has been done by the scientific, regulatory, and business communities to elucidate the effects and risks of pharmaceuticals and personal care products (PPCPs) in the environment. Objective: This review was undertaken to identify key outstanding issues regarding the effects of PPCPs on human and ecological health in order to ensure that future resources will be focused on the most important areas. Data sources: To better understand and manage the risks of PPCPs in the environment, we used the "key question" approach to identify the principle issues that need to be addressed. Initially, questions were solicited from academic, government, and business communities around the world. A list of 101 questions was then discussed at an international expert workshop, and a top-20 list was developed. Following the workshop, workshop attendees ranked the 20 questions by importance. Data synthesis: The top 20 priority questions fell into seven categories: a) prioritization of substances for assessment, b) pathways of exposure, c) bioavailability and uptake, d) effects characterization, e) risk and relative risk, f) antibiotic resistance, and g) risk management. Conclusions: A large body of information is now available on PPCPs in the environment. This exercise prioritized the most critical questions to aid in development of future research programs on the topic.Centro de Investigaciones del Medioambient
Pharmaceuticals and personal care products in the environment: What are the big questions?
Background: Over the past 10-15 years, a substantial amount of work has been done by the scientific, regulatory, and business communities to elucidate the effects and risks of pharmaceuticals and personal care products (PPCPs) in the environment. Objective: This review was undertaken to identify key outstanding issues regarding the effects of PPCPs on human and ecological health in order to ensure that future resources will be focused on the most important areas. Data sources: To better understand and manage the risks of PPCPs in the environment, we used the "key question" approach to identify the principle issues that need to be addressed. Initially, questions were solicited from academic, government, and business communities around the world. A list of 101 questions was then discussed at an international expert workshop, and a top-20 list was developed. Following the workshop, workshop attendees ranked the 20 questions by importance. Data synthesis: The top 20 priority questions fell into seven categories: a) prioritization of substances for assessment, b) pathways of exposure, c) bioavailability and uptake, d) effects characterization, e) risk and relative risk, f) antibiotic resistance, and g) risk management. Conclusions: A large body of information is now available on PPCPs in the environment. This exercise prioritized the most critical questions to aid in development of future research programs on the topic.Fil: Boxall, Alistair B. A.. University of York; Reino UnidoFil: Rudd, Murray A.. University of York; Reino UnidoFil: Brooks, Bryan W.. Baylor University; Estados UnidosFil: Caldwell, Daniel J.. Johnson & Johnson; Estados UnidosFil: Choi, Kyungho. Seoul National University; Corea del SurFil: Hickmann, Silke. Umweltbundesamt; AlemaniaFil: Innes, Elizabeth. Health Canada; CanadáFil: Ostapyk, Kim. Health Canada; CanadáFil: Staveley, Jane P.. Exponent; Estados UnidosFil: Verslycke, Tim. Gradient; Estados UnidosFil: Ankley, Gerald T.. United States Environmental Protection Agency; Estados UnidosFil: Beazley, Karen F.. Dalhousie University Halifax; CanadáFil: Belanger, Scott E.. Procter And Gamble; Estados UnidosFil: Berninger, Jason P.. Baylor University; Estados UnidosFil: Carriquiriborde, Pedro. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de QuÃmica. Centro de Investigaciones del Medio Ambiente; ArgentinaFil: Coors, Anja. Ect Oekotoxikologie Gmbh; AlemaniaFil: DeLeo, Paul C.. American Cleaning Institute; Estados UnidosFil: Dyer, Scott D.. Procter And Gamble; Estados UnidosFil: Ericson, Jon F.. Pfizer Inc.; Estados UnidosFil: Gagné, François. Environment Canada; CanadáFil: Giesy, John P.. University of Saskatchewan; CanadáFil: Gouin, Todd. Unilever; Reino UnidoFil: Hallstrom, Lars. University of Alberta; CanadáFil: Karlsson, Maja V.. University of York; Reino UnidoFil: Joakim Larsson, D.G.. University of Göteborg; AlemaniaFil: Lazorchak, James M.. United States Environmental Protection Agency; Estados UnidosFil: Mastrocco, Frank. Pfizer Inc.; Estados UnidosFil: McLaughlin, Alison. Health Canada; CanadáFil: McMaster, Mark E.. Environment Canada; CanadáFil: Meyerhoff, Roger D.. Eli Lilly And Company; Estados UnidosFil: Moore, Roberta. Health Canada; CanadáFil: Parrott, Joanne L.. Environment Canada; CanadáFil: Snape, Jason R.. AstraZeneca UK Ltd.; Reino UnidoFil: Murray-Smith, Richard. AstraZeneca UK Ltd.; Reino UnidoFil: Servos, Mark R.. University of Waterloo; CanadáFil: Sibley, Paul K.. University of Guelph; CanadáFil: Straub, Jürg Oliver. F. Hoffmann-La Roche Ltd.; SuizaFil: Szabo, Nora D.. University of Ottawa; CanadáFil: Topp, Edward. Agriculture Et Agroalimentaire Canada; CanadáFil: Tetreault, Gerald R.. University of Waterloo; CanadáFil: Trudeau, Vance L.. University of Ottawa; CanadáFil: Van Der Kraak, Glen. University of Guelph; Canad
Behavioral attributes influence annual mating success more than morphological traits in male collared lizards
Traits that potentially influence mating success (MS) may be "static" with low lability once they develop or "dynamic" with highly modifiable expression. We used principal components (PCs) analyses of dynamic behavioral and morphological traits that are static over the short term to determine their relative contributions to the ability of territorial male collared lizards to acquire access to females and obtain high MS. We estimated annual MS of males as the relative frequency with which they engaged in courtship with reproductively active resident females. Three PCs explained statistically significant phenotypic variation among males. Morphological traits loaded significantly on 2 PCs that explained 26.3% and 13.0% of the variance, respectively, whereas behavioral variables loaded significantly on a different component that explained 15.7% of the variance in male traits. The frequency with which males initiated aggressive encounters with same-sex competitors did not load significantly on these PC axes. Males having behavioral PC scores above the mean had significantly higher MS than those with behavioral scores below the mean, whereas male MS was not related to component scores for either of the axes describing static morphological variables. Results indicate that in our population behavior patterns associated with advertisement, particularly to females, influence male MS more strongly than morphological traits or the initiation of direct aggression with same-sex competitors. Copyright 2007, Oxford University Press.