6,090 research outputs found

    Contrast Interferometry Using Bose-Einstein Condensates to Measure h/m and the Fine Structure Constant

    Full text link
    The kinetic energy of an atom recoiling due to absorption of a photon was measured as a frequency using an interferometric technique called ``contrast interferometry''. Optical standing wave pulses were used as atom-optical elements to create a symmetric three-path interferometer with a Bose-Einstein condensate. The recoil phase accumulated in different paths was measured using a single-shot detection technique. The scheme allows for additional photon recoils within the interferometer and its symmetry suppresses several random and systematic errors including those from vibrations and ac Stark shifts. We have measured the photon recoil frequency of sodium to 77 ppm precision, using a simple realization of this scheme. Plausible extensions should yield a sufficient precision to bring within reach a ppb-level determination of h/mh/m and the fine structure constant α\alpha

    The spin 1/2 Heisenberg star with frustration II: The influence of the embedding medium

    Full text link
    We investigate the spin 1/2 Heisenberg star introduced in J. Richter and A. Voigt, J. Phys. A: Math. Gen. {\bf 27}, 1139 (1994). The model is defined by H=J1i=1Ns0si+J2HR{si}H=J_1 \sum_{i=1}^{N}{{\bf s}_0{\bf s}_i} + J_2 H_{R}\{{\bf s}_i\} ; J1,J20J_1,J_2 \ge 0 , i=1,...,Ni=1,...,N. In extension to the Ref. we consider a more general HR{si}H_{R}\{{\bf s}_i\} describing the properties of the spins surrounding the central spin s0{\bf s}_0. The Heisenberg star may be considered as an essential structure element of a lattice with frustration (namely a spin embedded in a magnetic matrix HRH_R) or, alternatively, as a magnetic system HR H_R with a perturbation by an extra spin. We present some general features of the eigenvalues, the eigenfunctions as well as the spin correlation s0si\langle {\bf s}_0{\bf s}_i \rangle of the model. For HRH_R being a linear chain, a square lattice or a Lieb-Mattis type system we present the ground state properties of the model in dependence on the frustration parameter α=J2/J1\alpha=J_2/J_1. Furthermore the thermodynamic properties are calculated for HRH_R being a Lieb--Mattis antiferromagnet.Comment: 16 pages, uuencoded compressed postscript file, accepted to J. Phys. A: Math. Ge

    Hydrodynamic coupling and rotational mobilities near planar elastic membranes

    Get PDF
    We study theoretically and numerically the coupling and rotational hydrodynamic interactions between spherical particles near a planar elastic membrane that exhibits resistance towards shear and bending. Using a combination of the multipole expansion and Faxen's theorems, we express the frequency-dependent hydrodynamic mobility functions as a power series of the ratio of the particle radius to the distance from the membrane for the self mobilities, and as a power series of the ratio of the radius to the interparticle distance for the pair mobilities. In the quasi-steady limit of zero frequency, we find that the shear- and bending-related contributions to the particle mobilities may have additive or suppressive effects depending on the membrane properties in addition to the geometric configuration of the interacting particles relative to the confining membrane. To elucidate the effect and role of the change of sign observed in the particle self and pair mobilities, we consider an example involving a torque-free doublet of counterrotating particles near an elastic membrane. We find that the induced rotation rate of the doublet around its center of mass may differ in magnitude and direction depending on the membrane shear and bending properties. Near a membrane of only energetic resistance toward shear deformation, such as that of a certain type of elastic capsules, the doublet undergoes rotation of the same sense as observed near a no-slip wall. Near a membrane of only energetic resistance toward bending, such as that of a fluid vesicle, we find a reversed sense of rotation. Our analytical predictions are supplemented and compared with fully resolved boundary integral simulations where a very good agreement is obtained over the whole range of applied frequencies.Comment: 14 pages, 7 figures. Revised manuscript resubmitted to J. Chem. Phy

    Ion distribution and ablation depth measurements of a fs-ps laser-irradiated solid tin target

    Get PDF
    The ablation of solid tin surfaces by an 800-nanometer-wavelength laser is studied for a pulse length range from 500 fs to 4.5 ps and a fluence range spanning 0.9 to 22 J/cm^2. The ablation depth and volume are obtained employing a high-numerical-aperture optical microscope, while the ion yield and energy distributions are obtained from a set of Faraday cups set up under various angles. We found a slight increase of the ion yield for an increasing pulse length, while the ablation depth is slightly decreasing. The ablation volume remained constant as a function of pulse length. The ablation depth follows a two-region logarithmic dependence on the fluence, in agreement with the available literature and theory. In the examined fluence range, the ion yield angular distribution is sharply peaked along the target normal at low fluences but rapidly broadens with increasing fluence. The total ionization fraction increases monotonically with fluence to a 5-6% maximum, which is substantially lower than the typical ionization fractions obtained with nanosecond-pulse ablation. The angular distribution of the ions does not depend on the laser pulse length within the measurement uncertainty. These results are of particular interest for the possible utilization of fs-ps laser systems in plasma sources of extreme ultraviolet light for nanolithography.Comment: 8 pages, 7 figure

    More Benefits of Semileptonic Rare B Decays at Low Recoil: CP Violation

    Full text link
    We present a systematic analysis of the angular distribution of Bbar -> Kbar^\ast (-> Kbar pi) l^+ l^- decays with l = e, mu in the low recoil region (i.e. at high dilepton invariant masses of the order of the mass of the b-quark) to account model-independently for CP violation beyond the Standard Model, working to next-to-leading order QCD. From the employed heavy quark effective theory framework we identify the key CP observables with reduced hadronic uncertainties. Since some of the CP asymmetries are CP-odd they can be measured without B-flavour tagging. This is particularly beneficial for Bbar_s,B_s -> phi(-> K^+ K^-) l^+ l^- decays, which are not self-tagging, and we work out the corresponding time-integrated CP asymmetries. Presently available experimental constraints allow the proposed CP asymmetries to be sizeable, up to values of the order ~ 0.2, while the corresponding Standard Model values receive a strong parametric suppression at the level of O(10^-4). Furthermore, we work out the allowed ranges of the short-distance (Wilson) coefficients C_9,C_10 in the presence of CP violation beyond the Standard Model but no further Dirac structures. We find the Bbar_s -> mu^+ mu^- branching ratio to be below 9*10^-9 (at 95% CL). Possibilities to check the performance of the theoretical low recoil framework are pointed out.Comment: 18 pages, 3 fig.; 1 reference and comment on higher order effects added; EOS link fixed. Minor adjustments to Eqs 4.1-4.3 to match the (lower) q^2-cut as given in paper. Main results and conclusions unchanged; v3+v4: treatment of exp. uncert. in likelihood-function in EOS fixed and constraints from scan on C9,C10 updated (Fig 2,3 and Eqs 3.2,3.3). Main results and conclusions absolutely unchange

    Modelling marine emissions and atmospheric distributions of halocarbons and dimethyl sulfide: the influence of prescribed water concentration vs. prescribed emissions

    Get PDF
    Marine-produced short-lived trace gases such as dibromomethane (CH2Br2), bromoform (CHBr3), methyliodide (CH3I) and dimethyl sulfide (DMS) significantly impact tropospheric and stratospheric chemistry. Describing their marine emissions in atmospheric chemistry models as accurately as possible is necessary to quantify their impact on ozone depletion and Earth's radiative budget. So far, marine emissions of trace gases have mainly been prescribed from emission climatologies, thus lacking the interaction between the actual state of the atmosphere and the ocean. Here we present simulations with the chemistry climate model EMAC (ECHAM5/MESSy Atmospheric Chemistry) with online calculation of emissions based on surface water concentrations, in contrast to directly prescribed emissions. Considering the actual state of the model atmosphere results in a concentration gradient consistent with model real-time conditions at the ocean surface and in the atmosphere, which determine the direction and magnitude of the computed flux. This method has a number of conceptual and practical benefits, as the modelled emission can respond consistently to changes in sea surface temperature, surface wind speed, sea ice cover and especially atmospheric mixing ratio. This online calculation could enhance, dampen or even invert the fluxes (i.e. deposition instead of emissions) of very short-lived substances (VSLS). We show that differences between prescribing emissions and prescribing concentrations (−28 % for CH2Br2 to +11 % for CHBr3) result mainly from consideration of the actual, time-varying state of the atmosphere. The absolute magnitude of the differences depends mainly on the surface ocean saturation of each particular gas. Comparison to observations from aircraft, ships and ground stations reveals that computing the air–sea flux interactively leads in most of the cases to more accurate atmospheric mixing ratios in the model compared to the computation from prescribed emissions. Calculating emissions online also enables effective testing of different air–sea transfer velocity (k) parameterizations, which was performed here for eight different parameterizations. The testing of these different k values is of special interest for DMS, as recently published parameterizations derived by direct flux measurements using eddy covariance measurements suggest decreasing k values at high wind speeds or a linear relationship with wind speed. Implementing these parameterizations reduces discrepancies in modelled DMS atmospheric mixing ratios and observations by a factor of 1.5 compared to parameterizations with a quadratic or cubic relationship to wind spee
    corecore