115 research outputs found

    Isolated Rafts from Adriamycin-Resistant P388 Cells Contain Functional ATPases and Provide an Easy Test System for P-glycoprotein-Related Activities

    Get PDF
    No Heading: Purpose.: P-glycoprotein (P-gp), a membrane ATPase expelling many structurally unrelated compounds out of cells, is one of the major contributors to multidrug resistance. It is enriched in cold TritonX-100 insoluble membrane domains (i.e., rafts). The purpose of this work was to characterize the ATPase activities of raft preparations from P388 cells overexpressing P-gp (P388/ADR) or devoid of P-gp (P388) and to establish a P-gp-enriched screening system for P-gp-interfering compounds. Methods.: Rafts were extracted with cold TritonX-100. The ATPase activity was characterized in 96-well plates using a fluorescence assay. Results.: The ATPase activity per mg protein was about five times higher in P388/ADR rafts than in crude membranes. The anti-P-gp antibody C219 inhibited 20% of the activity in P388/ADR rafts but only about 10% of the activity in P388/ADR crude membranes and had no effect on the activity of P388 rafts. The known P-gp-activating compounds verapamil, progesterone, and valinomycin revealed the typical bell-shaped activity/concentration profiles in P388/ADR rafts, indicative for activation at low compound concentrations and inhibition at concentrations >10 to 100 ÎĽM. The inhibitory effect was also observed in P388 rafts. Conclusions.: Extracted rafts are rich in functional ATPases. Rafts from P-gp-overexpressing cells display P-gp-typical ATPase activity and provide an easy, P-gp-enriched screening syste

    Noninvasive PET Imaging and Tracking of Engineered Human Muscle Precursor Cells for Skeletal Muscle Tissue Engineering

    Get PDF
    Transplantation of human muscle precursor cells (hMPCs) is envisioned for the treatment of various muscle diseases. However, a feasible noninvasive tool to monitor cell survival, migration, and integration into the host tissue is still missing. METHODS: In this study, we designed an adenoviral delivery system to genetically modify hMPCs to express a signaling-deficient form of human dopamine D2 receptor (hD2R). The gene expression levels of the receptor were evaluated by reverse transcriptase polymerase chain reaction, and infection efficiency was evaluated by fluorescent microscopy. The viability, proliferation, and differentiation capacity of the transduced cells, as well as their myogenic phenotype, were determined by flow cytometry analysis and fluorescent microscopy. (18)F-fallypride and (18)F-fluoromisonidazole, two well-established PET radioligands, were assessed for their potential to image engineered hMPCs in a mouse model and their uptakes were evaluated at different time points after cell inoculation in vivo. Biodistribution studies, autoradiography, and PET experiments were performed to determine the extent of signal specificity. To address feasibility for tracking hMPCs in an in vivo model, the safety of the adenoviral gene delivery was evaluated. Finally, the harvested tissues were histologically examined to determine whether survival of the transplanted cells was sustained at different time points. RESULTS: Adenoviral gene delivery was shown to be safe, with no detrimental effects on the primary human cells. The viability, proliferation, and differentiation capacity of the transduced cells were confirmed, and flow cytometry analysis and fluorescent microscopy showed that their myogenic phenotype was sustained. (18)F-fallypride and (18)F-fluoromisonidazole were successfully synthesized. Specific binding of (18)F-fallypride to hD2R hMPCs was demonstrated in vitro and in vivo. Furthermore, the (18)F-fluoromisonidazole signal was high at the early stages. Finally, sustained survival of the transplanted cells at different time points was confirmed histologically, with formation of muscle tissue at the site of injection. CONCLUSION: Our proposed use of a signaling-deficient hD2R as a potent reporter for in vivo hMPC PET tracking by (18)F-fallypride is a significant step toward potential noninvasive tracking of hD2R hMPCs and bioengineered muscle tissues in the clinic

    Population Pharmacokinetic Modeling for Twice-Daily Intravenous Busulfan in a Large Cohort of Pediatric Patients Undergoing Hematopoietic Stem Cell Transplantation—A 10-Year Single-Center Experience

    Get PDF
    Reaching target exposure of busulfan-based conditioning prior to hematopoietic stem cell transplantation is vital for favorable therapy outcomes. Yet, a wide inter-patient and inter-occasion variability in busulfan exposure has been reported, especially in children. We aimed to identify factors associated with the variability of busulfan pharmacokinetics in 124 consecutive patients transplanted at the University Children’s Hospital Zurich between October 2010 and February 2020. Clinical data and busulfan plasma levels after twice-daily intravenous administration were analyzed retrospectively by population pharmacokinetic modeling. The volume of distribution correlated with total body water. The elimination rate constant followed an age-dependent maturation function, as previously suggested, and correlated with the levels of serum albumin. Acute lymphoblastic leukemia reduced busulfan clearance by 20%. Clearance significantly decreased by 17% on average from the start to the third day of busulfan administration, in agreement with other studies. An average reduction of 31% was found in patients with hemophagocytic lymphohistiocytosis and X-linked lymphoproliferative disease. In conclusion, we demonstrate that in addition to known factors, underlying disease and serum albumin significantly impact busulfan pharmacokinetics in pediatric patients; yet, substantial unexplained variability in some patients remained. Thus, we consider repeated pharmacokinetic assessment essential to achieve the desired target exposure in twice-daily busulfan administration

    Crosstalk within peripheral blood mononuclear cells mediates anti-inflammatory effects of n-3 PUFA-rich lipid emulsions in parenteral nutrition

    Full text link
    Background and aims: Parenteral nutrition (PN) rich in n-6 and n-3 long-chain fatty acids is used in clinical practice for nourishing patients who are unable to receive adequate nutrition through their digestive systems. In this study, we compare the effect on inflammation of the commonly used lipid emulsions Omegaven (n-3-rich) and Intralipid (n-6-rich) in human peripheral blood mononuclear cells (PBMCs)

    Pharmacogenetic Analysis of Voriconazole Treatment in Children

    Full text link
    Voriconazole is among the first-line antifungal drugs to treat invasive fungal infections in children and known for its pronounced inter- and intraindividual pharmacokinetic variability. Polymorphisms in genes involved in the metabolism and transport of voriconazole are thought to influence serum concentrations and eventually the therapeutic outcome. To investigate the impact of these genetic variants and other covariates on voriconazole trough concentrations, we performed a retrospective data analysis, where we used medication data from 36 children suffering from invasive fungal infections treated with voriconazole. Data were extracted from clinical information systems with the new infrastructure SwissPKcdw, and linear mixed effects modelling was performed using R. Samples from 23 children were available for DNA extraction, from which 12 selected polymorphism were genotyped by real-time PCR. 192 (49.1%) of 391 trough serum concentrations measured were outside the recommended range. Voriconazole trough concentrations were influenced by polymorphisms within the metabolizing enzymes CYP2C19 and CYP3A4, and within the drug transporters ABCC2 and ABCG2, as well as by the co-medications ciprofloxacin, levetiracetam, and propranolol. In order to prescribe an optimal drug dosage, pre-emptive pharmacogenetic testing and careful consideration of co-medications in addition to therapeutic drug monitoring might improve voriconazole treatment outcome of children with invasive fungal infections. Keywords: ABCC2; ABCG2; CYP2C19; CYP3A4; children; non-linear mixed effects modelling; pediatric pharmacology; pharmacogenetics; therapeutic drug monitoring; voriconazol

    Endothelial Barrier Disruption by Lipid Emulsions Containing a High Amount of N3 Fatty Acids (Omegaven) but Not N6 Fatty Acids (Intralipid)

    Full text link
    Lipid emulsions are crucial for life-saving total parenteral nutrition (TPN). Their composition provides a high amount of essential fatty acids and calories for millions of patients with serious diseases. Nevertheless, several TPN-mediated side-effects have been reported in over 90% of patients. This project aimed to investigate the effect of a high amount of ω3 fatty acids (Omegaven®^{®}) emulsion vs. a high amount of ω6 fatty acids (Intralipid®^{®}) emulsions on the endothelial barrier function. EA.hy926 cell line was cultured and incubated with 0.01, 0.1, and 1 mM lipid emulsions. The influence of these lipid emulsions on the barrier function was assessed using ECIS technology, immunofluorescent microscopy, viability measurements by flow cytometry, multiplex cytokines analysis, and qRT-PCR. BODIPY staining confirmed the uptake of fatty acids by endothelial cells. ECIS measurements demonstrated that a high concentration of Omegaven®^{®} prevents barrier formation and impairs the barrier function by inducing cell detachment. Moreover, the expression of VE-cadherin and F-actin formation showed a reorganization of the cell structure within 2 h of 1 mM Omegaven®^{®} addition. Interestingly, the study's findings contradict previous studies and revealed that Omegaven®^{®} at high concentration, but not Intralipid, induces cell detachments, impairing endothelial cells' barrier function. In summary, our studies shed new light on the effect of lipid emulsions on the endothelium

    Pharmacokinetics and safety of panobacumab: specific adjunctive immunotherapy in critical patients with nosocomial Pseudomonas aeruginosa O11 pneumonia

    Get PDF
    Objectives Nosocomial Pseudomonas aeruginosa pneumonia remains a major concern in critically ill patients. We explored the potential impact of microorganism-targeted adjunctive immunotherapy in such patients. Patients and methods This multicentre, open pilot Phase 2a clinical trial (NCT00851435) prospectively evaluated the safety, pharmacokinetics and potential efficacy of three doses of 1.2 mg/kg panobacumab, a fully human monoclonal anti-lipopolysaccharide IgM, given every 72 h in 18 patients developing nosocomial P. aeruginosa (serotype O11) pneumonia. Results Seventeen out of 18 patients were included in the pharmacokinetic analysis. In 13 patients receiving three doses, the maximal concentration after the third infusion was 33.9 ± 8.0 μg/mL, total area under the serum concentration-time curve was 5397 ± 1993 μg h/mL and elimination half-life was 102.3 ± 47.8 h. Panobacumab was well tolerated, induced no immunogenicity and was detected in respiratory samples. In contrast to Acute Physiology and Chronic Health Evaluation II (APACHE II) prediction, all 13 patients receiving three doses survived, with a mean clinical resolution in 9.0 ± 2.7 days. Two patients suffered a recurrence at days 17 and 20. Conclusions These data suggest that panobacumab is safe, with a pharmacokinetic profile similar to that in healthy volunteers. It was associated with high clinical cure and survival rates in patients developing nosocomial P. aeruginosa O11 pneumonia. We concluded that these promising results warrant further trial

    Reproducibility of findings in modern PET neuroimaging: insight from the NRM2018 grand challenge

    Get PDF
    The reproducibility of findings is a compelling methodological problem that the neuroimaging community is facing these days. The lack of standardized pipelines for image processing, quantification and statistics plays a major role in the variability and interpretation of results, even when the same data are analysed. This problem is well-known in MRI studies, where the indisputable value of the method has been complicated by a number of studies that produce discrepant results. However, any research domain with complex data and flexible analytical procedures can experience a similar lack of reproducibility. In this paper we investigate this issue for brain PET imaging. During the 2018 NeuroReceptor Mapping conference, the brain PET community was challenged with a computational contest involving a simulated neurotransmitter release experiment. Fourteen international teams analysed the same imaging dataset, for which the ground-truth was known. Despite a plurality of methods, the solutions were consistent across participants, although not identical. These results should create awareness that the increased sharing of PET data alone will only be one component of enhancing confidence in neuroimaging results and that it will be important to complement this with full details of the analysis pipelines and procedures that have been used to quantify data.ISSN:0271-678XISSN:1559-701

    Error-prone protein synthesis recapitulates early symptoms of Alzheimer disease in aging mice

    Full text link
    Age-related neurodegenerative diseases (NDDs) are associated with the aggregation and propagation of specific pathogenic protein species (e.g., Aβ, α-synuclein). However, whether disruption of synaptic homeostasis results from protein misfolding per se rather than accumulation of a specific rogue protein is an unexplored question. Here, we show that error-prone translation, with its frequent outcome of random protein misfolding, is sufficient to recapitulate many early features of NDDs, including perturbed Ca2+ signaling, neuronal hyperexcitability, and mitochondrial dysfunction. Mice expressing the ribosomal ambiguity mutation Rps9 D95N exhibited disrupted synaptic homeostasis resulting in behavioral changes reminiscent of early Alzheimer disease (AD), such as learning and memory deficits, maladaptive emotional responses, epileptiform discharges, suppressed circadian rhythmicity, and sleep fragmentation, accompanied by hippocampal NPY expression and cerebral glucose hypometabolism. Collectively, our findings suggest that random protein misfolding may contribute to the pathogenesis of age-related NDDs, providing an alternative framework for understanding the initiation of AD. Keywords: Alzheimer; CP: Neuroscience; error-prone translation; neurodegenerative diseases; pathogenesis; protein misfolding; synaptic homeostasi
    • …
    corecore