9 research outputs found

    Oral health status in Slovak population of 15-year-old children

    Get PDF
    4siObjective: The aim of this study was to evaluate the prevalence of dental caries among 15-year-old children in Slovakia and to compare the results with previous similar studies. Method: A total of 257 fifteen-year-olds were examined in spring 2015 for caries prevalence according to WHO criteria. Results: The mean DMFT index was 3.49 (SD 3.2). There was a statistically significant relationship between the value of DMFT index and gender (for boys its value was 2.92, for girls 3.91). Conclusion: In our epidemiological study we detected the average value of DMFT of 15-year-old children to be 3.49. We are still failing to meet the goals about oral health status laid down by WHO till 2010. To find out the exact cause of the current state, as well as clarifying the trend in caries prevalence in the studied sample, further studies are needed. In order to improve the dental health situation of Slovak children, health authorities had to focus more on preventive oral health programs.openopenDianišková, S.; Králiková, M.; Gazdík, L.; Dalessandri, DDianišková, S.; Králiková, M.; Gazdík, L.; Dalessandri, Domenic

    Exhumation of west Sundaland: A record of the path of India?

    No full text
    The Indian Plate commenced its northward migration towards Eurasia in the Early Cretaceous. The lateral effect of this migration on the western edge of the Sunda Plate in Southeast Asia still remains equivocal. In order to assess this effect, we evaluate several key sectors characterized by deep crustal exhumation along a N-S transect from the southern Malay Peninsula to the East Himalayan Syntaxis. The evaluation is aided by a structural analysis of vertical movements and basin development. Five major metamorphic domes with similar geodynamic evolution, maximum P-T burial conditions and exhumation are studied. Exhumation of these domes migrated with time between Late Cretaceous in the Stong Complex (north Malaysia) in the south and Late Miocene in the Gaoligong Shear Zone (south China) in the north, as documented by published work and our new fission track data presented herein. Deformation is characterized by a N-S oriented extension that followed the more regional E-W oriented plate tectonic shortening, creating local core-complexes and syn-kinematic magmatism in the footwall of crustal-scale detachments, which displays a consistent temporal northward migration. The N-S extension was associated with the onset of hanging-wall deposition in the sedimentary basins of western Sundaland (e.g. Malay, Sumatra, and Thai Basins) during continuous exhumation of the footwall to upper brittle levels. Our multifaceted analysis of structural and thermochronological data shows a similar succession of tectonic, thermal and sedimentary events in west Sundaland that was driven by the gradual northward migration of India starting from Cretaceous times. We infer that the principal mechanism was driven by the subduction of an excess topography of Greater India rifted continental margin during its underplating, resulting in uplift, thermal anomalies, extensional exhumation and associated subsidence

    Geochronological evidence for the Alpine tectono-thermal evolution of the Veporic Unit (Western Carpathians, Slovakia)

    No full text
    Tectono-thermal evolution of the Veporic Unit was revealed by multiple geochronological methods, including 87Rb/86Sr on muscovite and biotite, zircon and apatite fission-track, and apatite (U-Th)/He analysis. Based on the new data, the following Alpine tectono-thermal stages can be distinguished: The Eo-Alpine Cretaceous nappe stacking (~135-95 Ma) resulted in burial of the Veporic Unit beneath the northward overthrusting Gemeric Unit and overlying Jurassic Meliata accretionary wedge. During this process the Veporic Unit reached metamorphic peak of greenschist- to amphibolite facies accompanied by orogen-parallel flow in its lower and middle crust. The subsequent evolution of this crust is associated with two distinct exhumation mechanisms related to collision with the northerly Tatric-Fatric basement. The first mechanism (~90-80 Ma) is associated with internal subhorizontal shortening of the Veporic Unit reflected by large-scale upright folding and heterogeneous exhumation of the Veporic lower crust in the cores of crustal-scale antiforms. This led to juxtaposition of the higher and lower grade parts of basement, all cooled down to ~350 °C by ~80 Ma. The second mechanism is associated with the overthrusting of the Veporic Unit over the attenuated Fatric crust. This led to a passive en-block exhumation of the Veporic crust from ~350 °C to 60 °C between ~80 and 55 Ma followed by erosion (~55-35 Ma). The erosion processes resulted in formation of planation surface before the Late Eocene transgression. After erosion and planation, a new sedimentary cycle of the Central Carpathian Palaeogene Basin was deposited with the sedimentary strata thickness of ~1.5-2.0 km (~21-17 Ma). The early to middle Miocene is characterised by destruction tectonic disintegration and erosion of this basin (~20-13 Ma) and formation of the Neogene Vepor Stratovolcano (~13 Ma). The final shaping of the area has been linked to erosional processes of the volcanic structure since the Late Sarmatian with accelerated processes during the Plio-Quaternary
    corecore