61 research outputs found

    Density wave and supersolid phases of correlated bosons in an optical lattice

    Full text link
    Motivated by the recent experiment on the Bose-Einstein condensation of 52^{52}Cr atoms with long-range dipolar interactions (Werner J. et al., Phys. Rev. Lett., 94 (2005) 183201), we consider a system of bosons with repulsive nearest and next-nearest neighbor interactions in an optical lattice. The ground state phase diagram, calculated using the Gutzwiller ansatz, shows, apart from the superfluid (SF) and the Mott insulator (MI), two modulated phases, \textit{i.e.}, the charge density wave (CDW) and the supersolid (SS). Excitation spectra are also calculated which show a gap in the insulators, gapless, phonon mode in the superfluid and the supersolid, and a mode softening of superfluid excitations in the vicinity of the modulated phases. We discuss the possibility of observing these phases in cold dipolar atoms and propose experiments to detect them

    Collective Excitations of Bose-Einstein Condensates in a Double-Well Potential

    Full text link
    We investigate collective excitations of Bose-Einstein condensates at absolute zero in a double-well trap. We solve the Bogoliubov equations with a double-well trap, and show that the crossover from the dipole mode to the Josephson plasma mode occurs in the lowest energy excitation. It is found that the anomalous tunneling property of low energy excitations is crucial to the crossover.Comment: 14 pages, 6 figure

    Ultracold Dipolar Gases in Optical Lattices

    Full text link
    This tutorial is a theoretical work, in which we study the physics of ultra-cold dipolar bosonic gases in optical lattices. Such gases consist of bosonic atoms or molecules that interact via dipolar forces, and that are cooled below the quantum degeneracy temperature, typically in the nK range. When such a degenerate quantum gas is loaded into an optical lattice produced by standing waves of laser light, new kinds of physical phenomena occur. These systems realize then extended Hubbard-type models, and can be brought to a strongly correlated regime. The physical properties of such gases, dominated by the long-range, anisotropic dipole-dipole interactions, are discussed using the mean-field approximations, and exact Quantum Monte Carlo techniques (the Worm algorithm).Comment: 56 pages, 26 figure

    Signature of anyonic statistics in the integer quantum Hall regime

    Full text link
    Anyons are exotic low-dimensional quasiparticles whose unconventional quantum statistics extends the binary particle division into fermions and bosons. The fractional quantum Hall regime provides a natural host, with first convincing anyon signatures recently observed through interferometry and cross-correlations of colliding beams. However, the fractional regime is rife with experimental complications, such as an anomalous tunneling density of states, which impede the manipulation of anyons. Here we show experimentally that the canonical integer quantum Hall regime can provide a robust anyon platform. Exploiting the Coulomb interaction between two co-propagating quantum Hall channels, an electron injected into one channel splits into two fractional charges behaving as abelian anyons. Their unconventional statistics is revealed by negative cross-correlations between dilute quasiparticle beams. Similarly to fractional quantum Hall observations, we show that the negative signal stems from a time-domain braiding process, here involving the incident fractional quasiparticles and spontaneously generated electron-hole pairs. Beyond the dilute limit, a theoretical understanding is achieved via the edge magnetoplasmon description of interacting integer quantum Hall channels. Our findings establish that, counter-intuitively, the integer quantum Hall regime provides a platform of choice for exploring and manipulating quasiparticles with fractional quantum statistics.Comment: 6 pages, 4 figures, 4 Extended Data figures, Methods, Supplemental Informatio

    Measurement of hadron cross sections with the SND detector

    Full text link
    New results on exclusive hadron production in e+e−e^+e^- annihilation obtained in experiments with the SND detector at the VEPP-2M and VEPP-2000 e+e−e^+e^- colliders are presented.Comment: 4 pages, 4 figures, presented at the 14th International Workshop on Meson Production, Properties and Interaction (MESON 2016), Cracow, Poland, 2nd - 7th June 201
    • …
    corecore