445 research outputs found

    Effects of Modified Magnetite Nanoparticles on Bacterial Cells and Enzyme Reactions

    Get PDF
    Current paper presents biological effects of magnetite nanoparticles (MNPs). Relations of MNP’ characteristics (zeta-potential and hydrodynamic diameters) with effects on bacteria and their enzymatic reactions were the main focus. Photobacterium phosphoreum and bacterial enzymatic reactions were chosen as bioassays. Three types of MNPs were under study: bare Fe3O4, Fe3O4 modified with 3-aminopropyltriethoxysilane (Fe3O4/APTES), and humic acids (Fe3O4/HA). Effects of the MNPs were studied at a low concentration range (< 2 mg/L) and attributed to availability and oxidative activity of Fe3+, high negative surface charge, and low hydrodynamic diameter of Fe3O4/HA, as well as higher Fe3+ content in suspensions of Fe3O4/HA. Low-concentration suspensions of bare Fe3O4 provided inhibitory effects in both bacterial and enzymatic bioassays, whereas the MNPs with modified surface (Fe3O4/APTES and Fe3O4/HA) did not affect the enzymatic activity. Under oxidative stress (i.e., in the solutions of model oxidizer, 1,4-benzoquinone), MNPs did not reveal antioxidant activity, moreover, Fe3O4/HA demonstrated additional inhibitory activity. The study contributes to the deeper understanding of a role of humic substances and silica in biogeochemical cycling of iron. Bioluminescence assays, cellular and enzymatic, can serve as convenient tools to evaluate bioavailability of Fe3+ in natural dispersions of iron-containing nanoparticles, e.g., magnetite, ferrihydrite, etc

    Association Study of TRPC4 as a Candidate Gene for Generalized Epilepsy with Photosensitivity

    No full text
    Photoparoxysmal response (PPR) is characterized by abnormal visual sensitivity of the brain to photic stimulation. Frequently associated with idiopathic generalized epilepsies (IGEs), it might be an endophenotype for cortical excitability. Transient receptor potential cation (TRPC) channels are involved in the generation of epileptiform discharges, and TRPC4 constitutes the main TRPC channel in the central nervous system. The present study investigated an association of PPR with sequence variations of the TRPC4 gene. Thirty-five single nucleotide polymorphisms (SNP) within TRPC4 were genotyped in 273 PPR probands and 599 population controls. Association analyses were performed for the broad PPR endophenotype (PPR types I-IV; n = 273), a narrow model of affectedness (PPR types III and IV; n = 214) and PPR associated with IGE (PPR/IGE; n = 106) for each SNP and for corresponding haplotypes. Association was found between the intron 5 SNP rs10507456 and PPR/IGE both for single markers (P = 0.005) and haplotype level (P = 0.01). Three additional SNPs (rs1535775, rs10161932 and rs7338118) within the same haplotype block were associated with PPR/IGE at P < 0.05 (uncorrected) as well as two more markers (rs10507457, rs7329459) located in intron 3. Again, the corresponding haplotype also showed association with PPR/IGE. Results were not significant following correction for multiple comparisons by permutation analysis for single markers and Bonferroni-Holm for haplotypes. No association was found between variants in TRPC4 and other phenotypes. Our results showed a trend toward association of TRPC4 variants and PPR/IGE. Further studies including larger samples of photosensitive probands are required to clarify the relevance of TRPC4 for PPR and IGE

    Characterization of a de novo SCN8A mutation in a patient with epileptic encephalopathy

    Get PDF
    Objective Recently, de novo SCN8A missense mutations have been identified as a rare dominant cause of epileptic encephalopathies. Functional studies on the first described case demonstrated gain-of-function effects of the mutation. We describe a novel de novo mutation of SCN8A in a patient with epileptic encephalopathy, and functional characterization of the mutant protein. Design Whole exome sequencing was used to discover the variant. We generated a mutant cDNA, transfected HEK293 cells, and performed Western blotting to assess protein stability. To study channel functional properties, patch-clamp experiments were carried out in transfected neuronal ND7/23 cells. Results The proband exhibited seizure onset at 6 months of age, diffuse brain atrophy, and more profound developmental impairment than the original case. The mutation p.Arg233Gly in the voltage sensing transmembrane segment D1S4 was present in the proband and absent in both parents. This mutation results in a temperature-sensitive reduction in protein expression as well as reduced sodium current amplitude and density and a relative increased response to a slow ramp stimulus, though this did not result in an absolute increased current at physiological temperatures. Conclusion The new de novo SCN8A mutation is clearly deleterious, resulting in an unstable protein with reduced channel activity. This differs from the gain-of-function attributes of the first SCN8A mutation in epileptic encephalopathy, pointing to heterogeneity of mechanisms. Since Nav1.6 is expressed in both excitatory and inhibitory neurons, a differential effect of a loss-of-function of Nav1.6 Arg223Gly on inhibitory interneurons may underlie the epilepsy phenotype in this patient

    Effects of Modified Magnetite Nanoparticles on Bacterial Cells and Enzyme Reactions

    Get PDF
    Current paper presents biological effects of magnetite nanoparticles (MNPs). Relations of MNP’ characteristics (zeta-potential and hydrodynamic diameters) with effects on bacteria and their enzymatic reactions were the main focus. Photobacterium phosphoreum and bacterial enzymatic reactions were chosen as bioassays. Three types of MNPs were under study: bare Fe3O4, Fe3O4 modified with 3-aminopropyltriethoxysilane (Fe3O4/APTES), and humic acids (Fe3O4/HA). Effects of the MNPs were studied at a low concentration range (< 2 mg/L) and attributed to availability and oxidative activity of Fe3+, high negative surface charge, and low hydrodynamic diameter of Fe3O4/HA, as well as higher Fe3+ content in suspensions of Fe3O4/HA. Low-concentration suspensions of bare Fe3O4 provided inhibitory effects in both bacterial and enzymatic bioassays, whereas the MNPs with modified surface (Fe3O4/APTES and Fe3O4/HA) did not affect the enzymatic activity. Under oxidative stress (i.e., in the solutions of model oxidizer, 1,4-benzoquinone), MNPs did not reveal antioxidant activity, moreover, Fe3O4/HA demonstrated additional inhibitory activity. The study contributes to the deeper understanding of a role of humic substances and silica in biogeochemical cycling of iron. Bioluminescence assays, cellular and enzymatic, can serve as convenient tools to evaluate bioavailability of Fe3+ in natural dispersions of iron-containing nanoparticles, e.g., magnetite, ferrihydrite, etc

    Towards a synthesized critique of neoliberal biodiversity conservation

    Get PDF
    During the last three decades, the arena of biodiversity conservation has largely aligned itself with the globally dominant political ideology of neoliberalism and associated governmentalities. Schemes such as payments for ecological services are promoted to reach the multiple ‘wins’ so desired: improved biodiversity conservation, economic development, (international) cooperation and poverty alleviation, amongst others. While critical scholarship with respect to understanding the linkages between neoliberalism, capitalism and the environment has a long tradition, a synthesized critique of neoliberal conservation - the ideology (and related practices) that the salvation of nature requires capitalist expansion - remains lacking. This paper aims to provide such a critique. We commence with the assertion that there has been a conflation between ‘economics’ and neoliberal ideology in conservation thinking and implementation. As a result, we argue, it becomes easier to distinguish the main problems that neoliberal win-win models pose for biodiversity conservation. These are framed around three points: the stimulation of contradictions; appropriation and misrepresentation and the disciplining of dissent. Inspired by Bruno Latour’s recent ‘compositionist manifesto’, the conclusion outlines some ideas for moving beyond critique

    ОПРЕДЕЛЕНИЕ КОНЦЕПЦИИ КАЧЕСТВА ФИЗИЧЕСКОГО СОВЕРШЕНСТВОВАНИЯ ЧЕЛОВЕКА В КОНТЕКСТЕ КАЧЕСТВА ЖИЗНИ

    Get PDF
    The urgency of definition of the concept of quality of physical perfection in a context of quality of life is described. Necessity of application to the decision of the given problem of system approaches is shown. The structure of developed model of system of quality management of granting of service as complex of the interconnected systems is defined. Questions of maintenance of a complex of means and methods of an estimation of a condition of the client and definition of a technique of formation of the correct typical program of physical preparation of the client are allocated. Описана актуальность определения концепции качества физического совершенствования в контексте качества жизни. Показана необходимость применения к решению данной проблемы системных подходов. Определена структура разрабатываемой модели системы менеджмента качества предоставления услуги как комплекса взаимосвязанных систем. Выделены вопросы обеспечения комплекса средств и методов оценки состояния клиента и определения методики формирования корректной типовой программы физической подготовки клиента.

    A Gene Co-Expression Network in Whole Blood of Schizophrenia Patients Is Independent of Antipsychotic-Use and Enriched for Brain-Expressed Genes

    Get PDF
    Despite large-scale genome-wide association studies (GWAS), the underlying genes for schizophrenia are largely unknown. Additional approaches are therefore required to identify the genetic background of this disorder. Here we report findings from a large gene expression study in peripheral blood of schizophrenia patients and controls. We applied a systems biology approach to genome-wide expression data from whole blood of 92 medicated and 29 antipsychotic-free schizophrenia patients and 118 healthy controls. We show that gene expression profiling in whole blood can identify twelve large gene co-expression modules associated with schizophrenia. Several of these disease related modules are likely to reflect expression changes due to antipsychotic medication. However, two of the disease modules could be replicated in an independent second data set involving antipsychotic-free patients and controls. One of these robustly defined disease modules is significantly enriched with brain-expressed genes and with genetic variants that were implicated in a GWAS study, which could imply a causal role in schizophrenia etiology. The most highly connected intramodular hub gene in this module (ABCF1), is located in, and regulated by the major histocompatibility (MHC) complex, which is intriguing in light of the fact that common allelic variants from the MHC region have been implicated in schizophrenia. This suggests that the MHC increases schizophrenia susceptibility via altered gene expression of regulatory genes in this network

    ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries

    Get PDF
    This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors

    Erythematous nodes, urticarial rash and arthralgias in a large pedigree with NLRC4-related autoinflammatory disease, expansion of the phenotype

    Get PDF
    Autoinflammatory disorders (AID) are a heterogeneous group of diseases, characterized by an unprovoked innate immune response, resulting in recurrent or ongoing systemic inflammation and fever1-3. Inflammasomes are protein complexes with an essential role in pyroptosis and the caspase-1-mediated activation of the proinflammatory cytokines IL-1β, IL-17 and IL-18

    Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial

    Get PDF
    Background: Rucaparib, a poly(ADP-ribose) polymerase inhibitor, has anticancer activity in recurrent ovarian carcinoma harbouring a BRCA mutation or high percentage of genome-wide loss of heterozygosity. In this trial we assessed rucaparib versus placebo after response to second-line or later platinum-based chemotherapy in patients with high-grade, recurrent, platinum-sensitive ovarian carcinoma. Methods: In this randomised, double-blind, placebo-controlled, phase 3 trial, we recruited patients from 87 hospitals and cancer centres across 11 countries. Eligible patients were aged 18 years or older, had a platinum-sensitive, high-grade serous or endometrioid ovarian, primary peritoneal, or fallopian tube carcinoma, had received at least two previous platinum-based chemotherapy regimens, had achieved complete or partial response to their last platinum-based regimen, had a cancer antigen 125 concentration of less than the upper limit of normal, had a performance status of 0–1, and had adequate organ function. Patients were ineligible if they had symptomatic or untreated central nervous system metastases, had received anticancer therapy 14 days or fewer before starting the study, or had received previous treatment with a poly(ADP-ribose) polymerase inhibitor. We randomly allocated patients 2:1 to receive oral rucaparib 600 mg twice daily or placebo in 28 day cycles using a computer-generated sequence (block size of six, stratified by homologous recombination repair gene mutation status, progression-free interval after the penultimate platinum-based regimen, and best response to the most recent platinum-based regimen). Patients, investigators, site staff, assessors, and the funder were masked to assignments. The primary outcome was investigator-assessed progression-free survival evaluated with use of an ordered step-down procedure for three nested cohorts: patients with BRCA mutations (carcinoma associated with deleterious germline or somatic BRCA mutations), patients with homologous recombination deficiencies (BRCA mutant or BRCA wild-type and high loss of heterozygosity), and the intention-to-treat population, assessed at screening and every 12 weeks thereafter. This trial is registered with ClinicalTrials.gov, number NCT01968213; enrolment is complete. Findings: Between April 7, 2014, and July 19, 2016, we randomly allocated 564 patients: 375 (66%) to rucaparib and 189 (34%) to placebo. Median progression-free survival in patients with a BRCA-mutant carcinoma was 16·6 months (95% CI 13·4–22·9; 130 [35%] patients) in the rucaparib group versus 5·4 months (3·4–6·7; 66 [35%] patients) in the placebo group (hazard ratio 0·23 [95% CI 0·16–0·34]; p&lt;0·0001). In patients with a homologous recombination deficient carcinoma (236 [63%] vs 118 [62%]), it was 13·6 months (10·9–16·2) versus 5·4 months (5·1–5·6; 0·32 [0·24–0·42]; p&lt;0·0001). In the intention-to-treat population, it was 10·8 months (8·3–11·4) versus 5·4 months (5·3–5·5; 0·36 [0·30–0·45]; p&lt;0·0001). Treatment-emergent adverse events of grade 3 or higher in the safety population (372 [99%] patients in the rucaparib group vs 189 [100%] in the placebo group) were reported in 209 (56%) patients in the rucaparib group versus 28 (15%) in the placebo group, the most common of which were anaemia or decreased haemoglobin concentration (70 [19%] vs one [1%]) and increased alanine or aspartate aminotransferase concentration (39 [10%] vs none). Interpretation: Across all primary analysis groups, rucaparib significantly improved progression-free survival in patients with platinum-sensitive ovarian cancer who had achieved a response to platinum-based chemotherapy. ARIEL3 provides further evidence that use of a poly(ADP-ribose) polymerase inhibitor in the maintenance treatment setting versus placebo could be considered a new standard of care for women with platinum-sensitive ovarian cancer following a complete or partial response to second-line or later platinum-based chemotherapy. Funding: Clovis Oncology
    corecore