7,309 research outputs found
Less is More: Non-renormalization Theorems from Lower Dimensional Superspace
We discuss a new class of non-renormalization theorems in N=4 and N=2
Super-Yang-Mills theory, obtained by using a superspace which makes a lower
dimensional subgroup of the full supersymmetry manifest. Certain Wilson loops
(and Wilson lines) belong to the chiral ring of the lower dimensional
supersymmetry algebra, and their expectation values can be computed exactly.Comment: 8 pages, based on talk given by Z. Guralnik at 8th Workshop on
Non-perturbative QCD, Paris, June 200
RNA-seq-based genome annotation and identification of long-noncoding RNAs in the grapevine cultivar âRieslingâ
Background: The technological advances of RNA-seq and de novo transcriptome assembly have enabled genome annotation and transcriptome profiling in highly heterozygous species such as grapevine (Vitis vinifera L.). This work is an attempt to utilize a de novo-assembled transcriptome of the V. vinifera cultivar âRieslingâ to improve annotation of the grapevine reference genome sequence. Results: Here we show that the transcriptome assembly of a single V. vinifera cultivar is insufficient for a complete genome annotation of the grapevine reference genome constructed from V. vinifera PN40024. Further, we provide evidence that the gene models we identified cannot be completely anchored to the previously published V. vinifera PN40024 gene models. In addition to these findings, we present a computational pipeline for the de novo identification of lncRNAs. Our results demonstrate that, in grapevine, lncRNAs are significantly different from protein coding transcripts in such metrics as length, GC-content, minimum free energy, and length-corrected minimum free energy. Conclusions: In grapevine, high-level heterozygosity necessitates that transcriptome characterization be based on cultivar-specific reference genome sequences. Our results strengthen the hypothesis that lncRNAs have thermodynamically different properties than protein-coding RNAs. The analyses of both coding and non-coding RNAs will be instrumental in uncovering inter-cultivar variation in wild and cultivated grapevine species
A perturbative re-analysis of N=4 supersymmetric Yang--Mills theory
The finiteness properties of the N=4 supersymmetric Yang-Mills theory are
reanalyzed both in the component formulation and using N=1 superfields, in
order to discuss some subtleties that emerge in the computation of gauge
dependent quantities. The one-loop corrections to various Green functions of
elementary fields are calculated. In the component formulation it is shown that
the choice of the Wess-Zumino gauge, that is standard in supersymmetric gauge
theories, introduces ultraviolet divergences in the propagators at the one-loop
level. Such divergences are exactly cancelled when the contributions of the
fields that are put to zero in the Wess-Zumino gauge are taken into account. In
the description in terms of N=1 superfields infrared divergences are found for
every choice of gauge different from the supersymmetric generalization of the
Fermi-Feynman gauge. Two-, three- and four-point functions of N=1 superfields
are computed and some general features of the infrared problem are discussed.
We also examine the effect of the introduction of mass terms for the (anti)
chiral superfields in the theory, which break supersymmetry from N=4 to N=1. It
is shown that in the mass deformed model no ultraviolet divergences appear in
two-point functions. It argued that this result can be generalized to n-point
functions, supporting the proposal of a possible of use of this modified model
as a supersymmetry-preserving regularization scheme for N=1 theories.Comment: 41 pages, LaTeX2e, uses feynMP package to draw Feynman diagram
Stellar rotational periods in the planet hosting open cluster Praesepe
By using the dense coverage of the extrasolar planet survey project HATNet,
we Fourier analyze 381 high-probability members of the nearby open cluster
Praesepe (Beehive/M44/NGC 2632). In addition to the detection of 10 variables
(of \delta Scuti and other types), we identify 180 rotational variables
(including the two known planet hosts). This sample increases the number of
known rotational variables in this cluster for spectral classes earlier than M
by more than a factor of three. These stars closely follow a color/magnitude --
period relation from early F to late K stars. We approximate this relation by
polynomials for an easier reference to the rotational characteristics in
different colors. The total (peak-to-peak) amplitudes of the large majority
(94%) of these variables span the range of 0.005 to 0.04 mag. The periods cover
a range from 2.5 to 15 days. These data strongly confirm that Praesepe and the
Hyades have the same gyrochronological ages. Regarding the two planet hosts,
Pr0211 (the one with the shorter orbital period) has a rotational period that
is ~2 days shorter than the one expected from the main rotational pattern in
this cluster. This, together with other examples discussed in the paper, may
hint that star-planet interaction via tidal dissipation can be significant in
some cases in the rotational evolution of stars hosting Hot Jupiters.Comment: 17 pages, 13 figures, 5 tables; accepted for publication in MNRA
N=1* model and glueball superpotential from Renormalization-Group-improved perturbation theory
A method for computing the low-energy non-perturbative properties of SUSY
GFT, starting from the microscopic lagrangian model, is presented. The method
relies on covariant SUSY Feynman graph techniques, adapted to low energy, and
Renormalization-Group-improved perturbation theory. We apply the method to
calculate the glueball superpotential in N=1 SU(2) SYM and obtain a potential
of the Veneziano-Yankielowicz type.Comment: 19 pages, no figures; added references; note added at the end of the
paper; version to appear in JHE
A multi-color and Fourier study of RR Lyrae variables in the globular cluster NGC 5272 (M3)
We have performed a detailed study of the pulsational and evolutionary
characteristics of 133 RR Lyrae stars in the globular cluster NGC5272 (M3)
using highly accurate BVI data taken on 5 separate epochs. M3 seems to contain
no less than ~32% of Blazhko stars, and the occurrence and characteristics of
the Blazhko effect have been analyzed in detail. We have identified a good
number (~ 14%) of overluminous RR Lyrae stars that are likely in a more
advanced evolutionary stage off the Zero Age Horizontal Branch (ZAHB). Physical
parameters (i.e. temperature, luminosity, mass) have been derived from (B--V)
colors and accurate color-temperature calibration, and compared with Horizontal
Branch evolutionary models and with the requirements of stellar pulsation
theory. Additional analysis by means of Fourier decomposition of the V light
curves confirms, as expected, that no metallicity spread is present in M3.
Evolution off the ZAHB does not affect [Fe/H] determinations, whereas Blazhko
stars at low amplitude phase do affect [Fe/H] distributions as they appear more
metal-rich. Absolute magnitudes derived from Fourier coefficients might provide
useful average estimates for groups of stars, if applicable, but do not give
reliable {\em individual} values. Intrinsic colors derived from Fourier
coefficients show significant discrepancies with the observed ones, hence the
resulting temperatures and temperature-related parameters are unreliable.Comment: 86 pages, 19 figures, 13 tables, in press A
Laser Micro-Processing Of Amorphous And Partially Crystalline cu45Zr48Al7 Alloy
This paper presents a microstructural study of laser micro-processed high-purity Cu45Zr48Al7 alloys prepared by arc melting and Cu-mould casting. Microprocessing of the Cu45Zr48Al7 alloy was performed using a RoïŹn DC-015 diffusion-cooled CO2 slab laser system with 10.6-”m wavelength. The laser was defocused to a spot size of 0.2 mm on the sample surface. The laser parameters were set to give 300- and 350-Wpeak power, 30% duty cycle and a 3000-Hz laser pulse repetition frequency (PRF). About 100-micrometer-wide channels were scribed on the surfaces
of disk-shaped amorphous and partially crystalline samples
at traverse speeds of 500 and 5000 mm/min. These channels
were analysed using scanning electron microscopy (SEM) and 2D stylus proïŹlometry. The metallographic study and proïŹle of these processed regions are discussed in terms of the applied laser processing parameters. The SEM micrographs showed that striation marks developed at the edge and inside these regions as a result of the laser processing. The results from this work showed that microscale features can be produced on the surface of amorphous CuâZrâAl alloys by CO2 laser processing
Fluctuations and the QCD phase diagram
In this contribution the role of quantum fluctuations for the QCD phase
diagram is discussed. This concerns in particular the importance of the matter
back-reaction to the gluonic sector. The impact of these fluctuations on the
location of the confinement/deconfinement and the chiral transition lines as
well as their interrelation are investigated. Consequences of our findings for
the size of a possible quarkyonic phase and location of a critical endpoint in
the phase diagram are drawn.Comment: 7 pages, 3 figures, to appear in Physics of Atomic Nucle
Non equilibrium inertial dynamics of colloidal systems
We consider the properties of a one dimensional fluid of brownian inertial
hard-core particles, whose microscopic dynamics is partially damped by a
heat-bath. Direct interactions among the particles are represented as binary,
instantaneous elastic collisions. Collisions with the heath bath are accounted
for by a Fokker-Planck collision operator, whereas direct collisions among the
particles are treated by a well known method of kinetic theory, the Revised
Enskog Theory. By means of a time multiple time-scale method we derive the
evolution equation for the average density. Remarkably, for large values of the
friction parameter and/or of the mass of the particles we obtain the same
equation as the one derived within the dynamic density functional theory (DDF).
In addition, at moderate values of the friction constant, the present method
allows to study the inertial effects not accounted for by DDF method. Finally,
a numerical test of these corrections is provided.Comment: 13 pages+ 3 Postscript figure
From Design to Production Control Through the Integration of Engineering Data Management and Workflow Management Systems
At a time when many companies are under pressure to reduce "times-to-market"
the management of product information from the early stages of design through
assembly to manufacture and production has become increasingly important.
Similarly in the construction of high energy physics devices the collection of
(often evolving) engineering data is central to the subsequent physics
analysis. Traditionally in industry design engineers have employed Engineering
Data Management Systems (also called Product Data Management Systems) to
coordinate and control access to documented versions of product designs.
However, these systems provide control only at the collaborative design level
and are seldom used beyond design. Workflow management systems, on the other
hand, are employed in industry to coordinate and support the more complex and
repeatable work processes of the production environment. Commercial workflow
products cannot support the highly dynamic activities found both in the design
stages of product development and in rapidly evolving workflow definitions. The
integration of Product Data Management with Workflow Management can provide
support for product development from initial CAD/CAM collaborative design
through to the support and optimisation of production workflow activities. This
paper investigates this integration and proposes a philosophy for the support
of product data throughout the full development and production lifecycle and
demonstrates its usefulness in the construction of CMS detectors.Comment: 18 pages, 13 figure
- âŠ