219 research outputs found
Airborne and Ground-Borne Noise and Vibration from Urban Rail Transit Systems
The environmental effect of ground-borne vibration and noise generated by urban rail transit systems is a growing concern in urban areas. This chapter reviews, synthesizes and benchmarks new understandings related to railway vibration and associated airborne and ground-borne noise. The aim is to provide new thinking on how to predict noise and vibration levels from numerical modelling and from readily available conventional site investigation data. Recent results from some European metropoles (Brussels, Athens, etc.) are used to illustrate the dynamic effect of urban railway vehicles. It is also proved that train type and the contact conditions at the wheel/rail interface can be influential in the generation of vibration. The use of noise-mapping-based results offers an efficient and rapid way to evaluate mitigation measures in a large scale regarding the noise exposure generated to dense urban railway traffic. It is hoped that this information may provide assistance to future researchers attempting to simulate railway vehicle vibration and noise
MBS/FEM co-simulation for hybrid modeling of railway dynamics
Nowadays in railway traffic, specific speed limitations exist depending on the train charge, due to a fragile subsoil or even an old building that has to be preserved. Depending on the type of vehicle, the type of soil or even the vehicle speed, the groundborne vibration characteristics can significantly vary. It becomes thus important to predict the vibrations generated by a train passing on a track in the surrounding soil. In order to achieve this prediction, a hybrid modeling approach, consisting in a vehicle modeled using the minimal coordinates approach in multibody systems theory and a soil modeled using a finite element method, is developed. The recoupling of this hybrid system is performed using co-simulation between two different software packages with their own solvers. The first software is EasyDyn, an in-house C++ library package dedicated to multibody dynamics and the second software is ABAQUS that is dedicated to finite element analysis. The aim of this paper is to illustrate the results given by this hybrid model. Then two different co-simulation schemes (the sequential Gauß-Seidel scheme and the parallel Jacobi scheme) will be used and compared in terms of accuracy for this specific railway application
A vehicle/track/soil model using co-simulation between multibody dynamics and finite element analysis
peer reviewe
- …