35 research outputs found

    Large-Scale Surface Mass Balance of Ice Sheets from a Comprehensive Atmospheric Model

    Get PDF
    The surface mass balance for Greenland and Antarctica has been calculated using model data from an AMIP-type experiment for the period 1979-2001 using the ECHAM5 spectral transform model at different triangular truncations. There is a significant reduction in the calculated ablation for the highest model resolution, T319 with an equivalent grid distance of ca 40km. As a consequence the T319 model has a positive surface mass balance for both ice sheets during the period. For Greenland, the models at lower resolution, T106 and T63, on the other hand, have a much stronger ablation leading to a negative surface mass balance. Calculations have also been undertaken for a climate change experiment using the IPCC scenario A1B, with a T213 resolution (corresponding to a grid distance of some 60km) and comparing two 30-year periods from the end of the twentieth century and the end of the twenty-first century, respectively. For Greenland there is change of 495km3/year, going from a positive to a negative surface mass balance corresponding to a sea level rise of 1.4mm/year. For Antarctica there is an increase in the positive surface mass balance of 285km3/year corresponding to a sea level fall by 0.8mm/year. The surface mass balance changes of the two ice sheets lead to a sea level rise of 7cm at the end of this century compared to end of the twentieth century. Other possible mass losses such as due to changes in the calving of icebergs are not considered. It appears that such changes must increase significantly, and several times more than the surface mass balance changes, if the ice sheets are to make a major contribution to sea level rise this century. The model calculations indicate large inter-annual variations in all relevant parameters making it impossible to identify robust trends from the examined periods at the end of the twentieth century. The calculated inter-annual variations are similar in magnitude to observations. The 30-year trend in SMB at the end of the twenty-first century is significant. The increase in precipitation on the ice sheets follows closely the Clausius-Clapeyron relation and is the main reason for the increase in the surface mass balance of Antarctica. On Greenland precipitation in the form of snow is gradually starting to decrease and cannot compensate for the increase in ablation. Another factor is the proportionally higher temperature increase on Greenland leading to a larger ablation. It follows that a modest increase in temperature will not be sufficient to compensate for the increase in accumulation, but this will change when temperature increases go beyond any critical limit. Calculations show that such a limit for Greenland might well be passed during this century. For Antarctica this will take much longer and probably well into following centurie

    A hazard model of sub-freezing temperatures in the United Kingdom using vine copulas

    Get PDF
    Extreme cold weather events, such as the winter of 1962/63, the third coldest winter ever recorded in the Central England Temperature record, or more recently the winter of 2010/11, have significant consequences for the society and economy. This paper assesses the probability of such extreme cold weather across the United Kingdom (UK), as part of a probabilistic catastrophe model for insured losses caused by the bursting of pipes. A statistical model is developed in order to model the extremes of the Air Freezing Index (AFI), which is a common measure of the magnitude and duration of freezing temperatures. A novel approach in the modelling of the spatial dependence of the hazard has been followed which takes advantage of the vine copula methodology. The method allows complex dependencies to be modelled, especially between the tails of the AFI distributions, which is important to assess the extreme behaviour of such events. The influence of the North Atlantic Oscillation and of anthropogenic climate change on the frequency of UK cold winters has also been taken into account. According to the model, the occurrence of extreme cold events, such as the 1962/63 winter, has decreased approximately 2 times during the course of the 20th century as a result of anthropogenic climate change. Furthermore, the model predicts that such an event is expected to become more uncommon, about 2 times less frequent, by the year 2030. Extreme cold spells in the UK have been found to be heavily modulated by the North Atlantic Oscillation (NAO) as well. A cold event is estimated to be ≈3–4 times more likely to occur during its negative phase than its positive phase. However, considerable uncertainty exists in these results, owing mainly to the short record length and the large interannual variability of the AFI.</p

    Beyond equilibrium climate sensitivity

    Get PDF
    ISSN:1752-0908ISSN:1752-089

    Interannual variability in tropospheric ozone and its precursors:a modeling study constrained by long-term ground-based and satellite observations

    No full text
    Tropospheric ozone (O3) is a harmful pollutant and an increasingly important green-house gas. Tropospheric O3 distributions are determined by complex and non-linear interactions between photochemistry and transport processes. The first objective of this thesis is to examine the factors that contribute to the interannual variation (IAV) of tropospheric O3 and related compounds, such as carbon monoxide (CO), for a period of 19 years (1987-2005), with a focus over the northern mid-latitudes. A series of long-term measurements, including ozonesondes, groud-based sites and satellites, are interpreted with a global chemical-transport model (GEOS-Chem) and a number of sensitivity simulations are performed to quantitatively assess the relative contribution of individual processes to the IAV of O3 and CO. We first assess the capability of the model to reproduce O3 and CO IAV. We find that the model is able to reproduce reasonably well many of the observed features of the O3 and CO IAV. The model however, fails to reproduce the observed variation in O3 in the northern mid-latitudes during the first half of the 1990s (negative anomaly in 1991-1993 followed by an upward trend in 1993-1996) which is likely due to an inadequate representation of stratospheric dynamics and stratospheric O3 concentrations in the model. This study has demonstrated that the principal drivers of O3 and CO IAV are meteorology and emissions. We examine in particular the 1998-1999 period. A large anomaly in O3 was observed at several sites over Europe and is fairly well reproduced by the model. Different processes are found to contribute to this long-lasting anomaly. The first period (spring 1998) was largely influenced by the strong preceding El Niño episode of 1997. El Niño Southern Oscillation (ENSO) affects the stratosphere-troposphere exchange (STE) and the Asian pollution export, through a change in convective activity and a strengthening of the subtropical jet. North American pollution export was also enhanced through an increase in temperature and in photochemical activity. During the second period (summer-fall 1998), the O3 budget over Europe was influenced by both boreal wildfires and Asian pollution. Finally, the O3 anomaly during the third period (spring 1999) was affected by enhanced biomass burning emissions in Southeast Asia. We further noticed that a significant correlation exists between the Southern Oscillation Index (SO1) in fall and the European tropospheric O3 column in the following spring (R= -0.65, N=19), throughout the period from 1987 to 2005. In other words, increasing tropospheric O3 column is seen over Europe the following spring of an El Niño year. In the second part of this thesis, we used inversion methods to derive monthly NOx, emissions from GOME and SCIAMACHY space-based retrievals of nitrogen dioxide (NO2) columns for a period of 10 years (1996-2005). We calculated emission trends over the highly industrialized regions and large cities around the globe. Decreasing emissions were found in the U.S. and Europe. However, negligible or even positive trends were seen in urban areas in northeastern U.S. (e.g. Boston) and southern Europe (e.g. Lisbon, Istanbul) which are most probably due to increasing motor vehicle NOx, emissions. Furthermore, a slowdown in the decreasing trend in NOx, combustion fuel emissions over North Europe has been noticed after 2000 and especially in 2003-2004. This is probably related to a slowdown in the decrease in road transport emissions. Increasing trends, on the other hand, have been found in the combustion fuel NOx, emissions over east China (8.3% year-1), due to the fast industrial and economical development of China. In addition, we found an upward trend in soil NOx, emissions which may be related to the increasing use of fertilizers in the northeastern part of the country. Finally, we examined the influence of using two different retrievals of NO2 columns on the resulting a posteriori inventories. The inversion was carried out twice for the year 2000, using two different retrievals, one from Dalhouse/SAO and one from BIRA/KNMI. The two resulting inventories were found to correspond well globally, but show important differences (more than 60%) at specific times and regions

    Can a global model reproduce observed trends in summertime surface ozone levels?

    Get PDF
    Quantifying trends in surface ozone concentrations is critical for assessing pollution control strategies. Here we use observations and results from a global chemical transport model to examine the trends (1991–2005) in daily maximum 8-h average concentrations in summertime surface ozone at rural sites in Europe and the United States (US). We find a decrease in observed ozone concentrations at the high end of the probability distribution at many of the sites in both regions. The model attributes these trends to a decrease in local anthropogenic ozone precursors, although simulated decreasing trends are overestimated in comparison with observed ones. The low end of observed distribution show small upward trends over Europe and the western US and downward trends in Eastern US. The model cannot reproduce these observed trends, especially over Europe and the western US. In particular, simulated changes between the low and high end of the distributions in these two regions are not significant. Sensitivity simulations indicate that emissions from far away source regions do not affect significantly summer ozone trends at both ends of the distribution in both Europe and US. Possible reasons for discrepancies between observed and simulated trends are discussed.ISSN:1680-7375ISSN:1680-736

    Can a global model reproduce observed trends in summertime surface ozone levels?

    Get PDF
    Quantifying trends in surface ozone concentrations is critical for assessing pollution control strategies. Here we use observations and results from a global chemical transport model to examine the trends (1991–2005) in daily maximum 8-h average concentrations in summertime surface ozone at rural sites in Europe and the United States (US). We find a decrease in observed ozone concentrations at the high end of the probability distribution at many of the sites in both regions. The model attributes these trends to a decrease in local anthropogenic ozone precursors, although simulated decreasing trends are overestimated in comparison with observed ones. The low end of observed distribution show small upward trends over Europe and the western US and downward trends in Eastern US. The model cannot reproduce these observed trends, especially over Europe and the western US. In particular, simulated changes between the low and high end of the distributions in these two regions are not significant. Sensitivity simulations indicate that emissions from far away source regions do not affect significantly summer ozone trends at both ends of the distribution in both Europe and US. Possible reasons for discrepancies between observed and simulated trends are discussed

    Influence of El Niño-Southern Oscillation on the interannual variability of tropospheric ozone in the northern midlatitudes

    No full text
    International audienceWe use the Goddard Earth Observing System Chem (GEOS-Chem) model to interpret long-term measurements of tropospheric ozone (O3) and carbon monoxide (CO) and to investigate the factors that contribute to their interannual variation (IAV) during the period from 1987 to 2005. The model reproduces relatively well the observed IAV of CO. The simulation of O3 IAV is not as successful. In particular, the negative anomalies in 1991-1993 and the following upward trend in 1993-1996 observed at several sites in the northern midlatitudes are not reproduced by the model, which may result from a poor representation of stratospheric chemistry and dynamics. We examine in detail the period of 1998-1999 when a large anomaly in tropospheric ozone column is observed and simulated over Europe (maximum of +4.9 Dobson units). Three consecutive periods can be distinguished from January 1998 to April 1999, during which different processes affected the O3 burden over Europe. Spring 1998 is largely influenced by the preceding 1997 El Niño that affects (1) stratosphere-troposphere exchange and (2) Asian pollution export and transport toward Europe by a change in convective activity in East Asia and a strengthening of the subtropical jet stream. An enhanced pollution export from North America is also noticed for this period. The second period (summer-fall 1998) shows a mixed influence from both boreal wildfires and Asian pollution. The third period is influenced by enhanced wildfires in Southeast Asia. Throughout the period from 1987 to 2005, positive anomalies in tropospheric O3 column and in surface O3 are found over Europe in the spring following an El Niño year
    corecore