76 research outputs found

    Function of PIAS proteins in steroid receptor-dependent signaling

    Get PDF

    Ympäristön ja elintapojen vaikutus miesten sukusolujen epigenomiin

    Get PDF
    Elintavoista ja ympäristöaltistuksista johtuvat terveyden häiriöt muodostavat suuren ongelman teollistuneessa länsimaisessa nyky-yhteiskunnassa. Näihin lukeutuvat myös miesten lisääntymisterveyden ongelmat, kuten siittiöiden laadun ja määrän laskeminen, joiden yhtenä tärkeänä aiheuttaja pidetään ympäristötekijöitä. Epigeneettisellä geenisäätelyllä on merkittävä rooli hedelmöityskykyisen siittiön muodostuksessa. Sukusolujen epigenomi on altis ympäristön vaikutuksille, ja on selvää, että epigenomin häiriöillä voi olla vakavia seurauksia siittiön muodostukseen. Sukusolujen epigenomin häiriöillä saattaa olla myös kauaskantoisempia vaikutuksia aina seuraaviin sukupolviin saakka, sillä eläinkokeilla on osoitettu, että tieto hankitusta ominaisuudesta voi siirtyä jälkeläiselle siittiöiden epigeneettisen tiedon välityksellä

    Epigeneettinen periytyminen sukusolulinjassa

    Get PDF
    Ympäristön aiheuttamat muutokset geenien toiminnassa voivat periytyä sukupolvelta toiselle sukusolujen välityksellä ja vaikuttaa näin jälkikasvun fenotyyppiin, ilman että {DNA}:n emäsjärjestyksessä tapahtuu muutoksia. Tällaisten havaintojen myötä evoluution ja geneettisen periytymisen mekanismeja on jouduttu tarkastelemaan uudelleen, sillä aikaisemmin on ajateltu, etteivät hankitut geenien toiminnalliset tilat periydy vaan että periytyvien fenotyyppien taustalla ovat joko mutaatioista johtuvat genomin rakenteelliset muutokset tai perinnöllisen materiaalin uudelleen järjestäytyminen. Tapahtumasarjaa, jossa tieto hankituista ominaisuuksista siirtyy yksilösukupolvelta toiselle sukusolulinjan epigeneettisten muutosten välityksellä kutsutaan epigeneettiseksi periytymiseksi. Kokeelliset tutkimukset ovat todistaneet ilmiön eläimillä. Ihmisillä sitä ei ole vielä vahvistettu, mutta ylisukupolvisissa väestötutkimuksissa on nähty yhteyksiä, jotka voisivat selittyä epigeneettisen periytymisen kautta

    Fhl5/Act, a CREM-binding transcriptional activator required for normal sperm maturation and morphology, is not essential for testicular gene expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The LIM domain protein Fhl5 was previously found to interact with CREM, a DNA binding transcriptional regulator necessary for spermiogenesis in mammals. Co-transfection experiments using heterologous promoter constructs indicated a role for Fhl5 in transcriptional up-regulation of CREM-dependent testicular genes. Male mice lacking Fhl5 were reported to be fertile but displayed partially abnormal sperm maturation and morphology.</p> <p>Methods</p> <p>To identify Fhl5 testicular target genes we carried out two whole-genome expression profiling experiments using high-density oligonucleotide microarrays and total testis samples from Fhl5 wild-type versus homozygous mutant mice first in different and then in isogenic strain backgrounds.</p> <p>Results</p> <p>Weak signal differences were detected in non-isogenic samples but no statistically significant expression changes were observed when isogenic Fhl5 mutant and wild-type samples were compared.</p> <p>Conclusion</p> <p>The outcome of these experiments suggests that testicular expression profiling is extremely sensitive to the genetic background and that Fhl5 is not essential for testicular gene expression to a level detected by microarray-based measurements. This might be due to redundant function of the related and similarly expressed protein Fhl4.</p

    Testicular "Inherited Metabolic Memory" of Ancestral High-Fat Diet Is Associated with Sperm sncRNA Content

    Get PDF
    Funding: This work was supported by the Portuguese Foundation for Science and Technology: L. Crisóstomo (SFRH/BD/128584/2017), M.G. Alves (PTDC/MEC-AND/28691/2017), UMIB (UIDB/00 215/2020 and UIDP/00215/2020), and ITR (LA/P/0064/2020) and co-funded by FEDER funds (POCI/COMPETE 2020) and by the Portuguese Society of Diabetology: L. Crisóstomo and M.G. Alves (“Nuno Castel-Branco” research grant and Group of Fundamental and Translational Research).publishersversionpublishe

    piRNA-directed cleavage of meiotic transcripts regulates spermatogenesis.

    Get PDF
    MIWI catalytic activity is required for spermatogenesis, indicating that piRNA-guided cleavage is critical for germ cell development. To identify meiotic piRNA targets, we augmented the mouse piRNA repertoire by introducing a human meiotic piRNA cluster. This triggered a spermatogenesis defect by inappropriately targeting the piRNA machinery to mouse mRNAs essential for germ cell development. Analysis of such de novo targets revealed a signature for pachytene piRNA target recognition. This enabled identification of both transposable elements and meiotically expressed protein-coding genes as targets of native piRNAs. Cleavage of genic targets began at the pachytene stage and resulted in progressive repression through meiosis, driven at least in part via the ping-pong cycle. Our data support the idea that meiotic piRNA populations must be strongly selected to enable successful spermatogenesis, both driving the response away from essential genes and directing the pathway toward mRNA targets that are regulated by small RNAs in meiotic cells.This work was supported by the National Institutes of Health R37 grant GM062534-14 to G.J.H. iTRAQ was performed with assistance from the Cold Spring Harbor Laboratory Proteomics Shared Resource, which is supported by Cancer Center support grant 5P30CA045508. W.S.S.G. is a McClintock Fellow of the Watson School of Biological Sciences and is supported by the NSS Scholarship from the Agency for Science, Technology and Research, Singapore. O.H.T. is supported by a fellowship of the Human Frontier Science Program. R.B. is supported by the Starr Centennial Scholarship from the Watson School of Biological Sciences. G.J.H. is a Howard Hughes Medical Institute Investigator.This is the final version of the article. It first appeared from Cold Spring Harbor Laboratory Press via http://dx.doi.org/10.1101/gad.260455.11

    DICER regulates the expression of major satellite repeat transcripts and meiotic chromosome segregation during spermatogenesis

    Get PDF
    Constitutive heterochromatin at the pericentric regions of chromosomes undergoes dynamic changes in its epigenetic and spatial organization during spermatogenesis. Accurate control of pericentric heterochromatin is required for meiotic cell divisions and production of fertile and epigenetically intact spermatozoa. In this study, we demonstrate that pericentric heterochromatin is expressed during mouse spermatogenesis to produce major satellite repeat (MSR) transcripts. We show that the endonuclease DICER localizes to the pericentric heterochromatin in the testis. Furthermore, DICER forms complexes with MSR transcripts, and their processing into small RNAs is compromised in Dicer1 knockout mice leading to an elevated level of MSR transcripts in meiotic cells. We also show that defective MSR forward transcript processing in Dicer1 cKO germ cells is accompanied with reduced recruitment of SUV39H2 and H3K9me3 to the pericentric heterochromatin and meiotic chromosome missegregation. Altogether, our results indicate that the physiological role of DICER in maintenance of male fertility extends to the regulation of pericentric heterochromatin through direct targeting of MSR transcripts

    Exonuclease Domain-Containing 1 Enhances MIWI2 piRNA Biogenesis via Its Interaction with TDRD12

    Get PDF
    PIWI proteins and their associated small RNAs, called PIWI-interacting RNAs (piRNAs), restrict transposon activity in animal gonads to ensure fertility. Distinct biogenesis pathways load piRNAs into the PIWI proteins MILI and MIWI2 in the mouse male embryonic germline. While most MILI piRNAs are derived via a slicer-independent pathway, MILI slicing loads MIWI2 with a series of phased piRNAs. Tudor domain-containing 12 (TDRD12) and its interaction partner Exonuclease domain-containing 1 (EXD1) are required for loading MIWI2, but only Tdrd12 is essential for fertility, leaving us with no explanation for the physiological role of Exd1. Using an artificial piRNA precursor, we demonstrate that MILI-triggered piRNA biogenesis is greatly reduced in the Exd1 mutant. The situation deteriorates in the sensitized Exd1 mutant (Exd1/;Tdrd12+/), where diminished MIWI2 piRNA levels de-repress LINE1 retrotransposons, leading to infertility. Thus, EXD1 enhances MIWI2 piRNA biogenesis via a functional interaction with TDRD12.<br /

    Intermitochondrial cement (IMC) harbors piRNA biogenesis machinery and exonuclease domain-containing proteins EXD1 and EXD2 in mouse spermatocytes

    Get PDF
    Background Germ granules are large cytoplasmic ribonucleoprotein complexes that emerge in the germline to participate in RNA regulation. The two most prominent germ granules are the intermitochondrial cement (IMC) in meiotic spermatocytes and the chromatoid body (CB) in haploid round spermatids, both functionally linked to the PIWI-interacting RNA (piRNA) pathway. Aims In this study, we clarified the IMC function by identifying proteins that form complexes with a well-known IMC protein PIWIL2/MILI in the mouse testis. Results The PIWIL2 interactome included several proteins with known functions in piRNA biogenesis. We further characterized the expression and localization of two of the identified proteins, Exonuclease 3′–5′ domain-containing proteins EXD1 and EXD2, and confirmed their localization to the IMC. We showed that EXD2 interacts with PIWIL2, and that the mutation of Exd2 exonuclease domain in mice induces misregulation of piRNA levels originating from specific pachytene piRNA clusters, but does not disrupt male fertility. Conclusion Altogether, this study highlights the central role of the IMC as a platform for piRNA biogenesis, and suggests that EXD1 and EXD2 function in the IMC-mediated RNA regulation in postnatal male germ cells.We would like to thank all Kotaja lab members for their support and help. The Turku BioScience Cell Imaging and Proteomics Core Facilities are acknowledged for their services and Turku Center for Disease Modeling (TCDM) and Turku Central Animal Facility for providing expertise on animal experimentation. This study was supported by the Academy of Finland, the Sigrid Jusélius Foundation, the Novo Nordisk Foundation, the Jalmari and Rauha Ahokas Foundation, Turku Doctoral Programme of Molecular Medicine (TuDMM), and the Finnish Cultural Foundation
    corecore