22 research outputs found

    Hepatomegaly Associated with Non-Obstructive Sinusoidal Dilation in Experimental Visceral Leishmaniasis.

    Get PDF
    Visceral leishmaniasis (VL) is the most severe form of leishmaniasis caused by protozoan parasites of the genus Leishmania. Hepatomegaly is one of the most frequent clinical manifestations of VL, whereas immunopathology of the symptom has not been well investigated. Using our chronic model of experimental VL, we examined the influence of Leishmania donovani infection on the liver by clinical, histological, and biochemical analyses. The infected mice showed increased liver weight 24 weeks post-infection. Although an increase in serum ALT and inflammatory cell accumulation were observed in the livers of infected mice, no apparent parenchymal necrosis or fibrosis was observed. Tissue water content analyses demonstrated that increased liver weight was predominantly due to an increase in water weight. Together with the finding of hepatic sinusoidal dilation, these results suggested that edema associated with sinusoidal dilation causes hepatomegaly in L. donovani infection. Immunostaining of platelets and erythrocytes showed no thrombus formation or damage to the sinusoidal endothelium in the liver of infected mice. Taken together, these results suggest that hepatomegaly during experimental VL is caused by non-obstructive sinusoidal dilation

    Hyperinsulinemia down-regulates TLR4 expression in the mammalian heart

    Get PDF
    Toll-like receptors (TLR) are key regulators of innate immune and inflammatory responses and their activation is linked to impaired glucose metabolism during metabolic disease. Determination of whether TLR4 signaling can be activated in the heart by insulin may shed light on the pathogenesis of diabetic cardiomyopathy, a process that is often complicated by obesity and insulin resistance. The aim of the current study was to determine if supraphysiological insulin concentrations alter the expression of TLR4, markers of TLR4 signaling and glucose transporters (GLUTs) in the heart. Firstly, the effect of insulin on TLR4 protein expression was investigated in vitro in isolated rat cardiac myocytes. Secondly, protein expression of TLR4, the pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-a) suppressor of cytokine signaling 3 (SOCS3) and GLUTs (1, 4, 8, 12) were examined in the equine ventricular myocardium following a prolonged, euglycemic, hyperinsulinemic clamp. Down-regulation of TLR4 protein content in rat cardiac myocytes was observed after incubation with a supraphysiologic concentration of insulin as well as in the equine myocardium after prolonged insulin infusion. Further, cardiac TLR4 expression was negatively correlated with serum insulin concentration. Markers of cardiac TLR4 signaling and GLUT expression were not affected by hyperinsulinemia and concomitant TLR4 down-regulation. Since TLRs are major determinants of the inflammatory response, our findings suggest that insulin infusion exerts an anti-inflammatory effect in the hearts of non-obese individuals. Understanding the regulation of cardiac TLR4 signaling during metabolic dysfunction will facilitate improved management of cardiac sequela to metabolic syndrome and diabetes.Peer reviewedPhysiological Science

    Selective gene silencing by viral delivery of short hairpin RNA

    Get PDF
    RNA interference (RNAi) technology has not only become a powerful tool for functional genomics, but also allows rapid drug target discovery and in vitro validation of these targets in cell culture. Furthermore, RNAi represents a promising novel therapeutic option for treating human diseases, in particular cancer. Selective gene silencing by RNAi can be achieved essentially by two nucleic acid based methods: i) cytoplasmic delivery of short double-stranded (ds) interfering RNA oligonucleotides (siRNA), where the gene silencing effect is only transient in nature, and possibly not suitable for all applications; or ii) nuclear delivery of gene expression cassettes that express short hairpin RNA (shRNA), which are processed like endogenous interfering RNA and lead to stable gene down-regulation. Both processes involve the use of nucleic acid based drugs, which are highly charged and do not cross cell membranes by free diffusion. Therefore, in vivo delivery of RNAi therapeutics must use technology that enables the RNAi therapeutic to traverse biological membrane barriers in vivo. Viruses and the vectors derived from them carry out precisely this task and have become a major delivery system for shRNA. Here, we summarize and compare different currently used viral delivery systems, give examples of in vivo applications, and indicate trends for new developments, such as replicating viruses for shRNA delivery to cancer cells

    Long term administration of loquat leaves and their major component, ursolic acid, attenuated endogenous amyloid-β burden and memory impairment

    No full text
    Abstract Loquat (Eriobotrya japonica) leaves contain many bioactive components such as ursolic acid (UA) and amygdalin. We investigated the effects of loquat leaf powder and methanol extract in human neuroglioma H4 cells stably expressing the Swedish-type APP695 (APPNL-H4 cells) and C57BL/6 J mice. Surprisingly, the extract greatly enhanced cellular amyloid-beta peptide (Aβ) 42 productions in APPNL-H4 cells. Administration of leaf powder increased Aβ42 levels after 3 months and decreased levels after 12 months compared to control mice. Leaf powder had no effect on working memory after 3 months, but improved working memory after 12 months. Administration of UA decreased Aβ42 and P-tau levels and improved working memory after 12 months, similar to the administration of leave powder for 12 months. Amygdalin enhanced cellular Aβ42 production in APPNL-H4 cells, which was the same as the extract. Three-month administration of amygdalin increased Aβ42 levels slightly but did not significantly increase them, which is similar to the trend observed with the administration of leaf powder for 3 months. UA was likely the main compound contained in loquat leaves responsible for the decrease in intracerebral Aβ42 and P-tau levels. Also, amygdalin might be one of the compounds responsible for the transiently increased intracerebral Aβ42 levels

    Everolimus-Eluting Biodegradable Abluminal Coating Stent versus Durable Conformal Coating Stent: Termination of the Inflammatory Response Associated with Neointimal Healing in a Porcine Coronary Model

    No full text
    Objectives. We evaluated the effect of the different carrier systems on early vascular response through histological analysis and scanning electron microscopy using a porcine model. Background. Although Synergy™ and Promus PREMIER™ share an identical stent material and drug elution (everolimus), they use different drug carrier systems: biodegradable abluminal coating polymer or durable conformal coating polymer, respectively. However, data regarding the impact of the different coating systems on vessel healing are currently limited. Methods. Twelve Synergy™ and Promus PREMIER™ were implanted in 12 swine. Histopathological analysis of the stented segments was performed on the 2nd and 14th days after implantation. Morphometric analysis of the inflammation and intimal fibrin content was also performed. Results. On the 2nd day, neointimal thickness, percentage of neointimal area, and inflammatory and intimal fibrin content scores were not significantly different between the two groups. On the 14th day, the inflammatory and intimal fibrin content scores were significantly lower in Synergy™ versus those observed in Promus PREMIER™. In Synergy™, smooth muscle cells were found and the neointimal layers were smooth. In contrast, inflammatory cells were observed surrounding the struts of Promus PREMIER™. Conclusions. These results demonstrate that termination of reactive inflammation is accelerated after abluminal coating stent versus implantation of conformal coating stent

    Inhibition of Microtubule Assembly by a Complex of Actin and Antitumor Macrolide Aplyronine A

    No full text
    Aplyronine A (ApA) is a marine natural product that shows potent antitumor activity. While both ApA and ApC, a derivative of ApA that lacks a trimethylserine ester moiety, inhibit actin polymerization in vitro to the same extent, only ApA shows potent cytotoxicity. Therefore, the molecular targets and mechanisms of action of ApA in cells have remained unclear. We report that ApA inhibits tubulin polymerization in a hitherto unprecedented way. ApA forms a 1:1:1 heterotrimeric complex with actin and tubulin, in association with actin synergistically binding to tubulin, and inhibits tubulin polymerization. Tubulin-targeting agents have been widely used in cancer chemotherapy, but there are no previous descriptions of microtubule inhibitors that also bind to actin and affect microtubule assembly. ApA inhibits spindle formation and mitosis in HeLa S3 cells at 100 pM, a much lower concentration than is needed for the disassembly of the actin cytoskeleton. The results of the present study indicate that ApA represents a rare type of natural product, which binds to two different cytoplasmic proteins to exert highly potent biological activities
    corecore