6 research outputs found

    Lucy Richardson and Mean Modified Wiener Filter for Construction of Super-Resolution Image

    Get PDF
    The ultimate goal of the Super-Resolution (SR) technique is to generate the High-Resolution (HR) image by combining the corresponding images with Low-Resolution (LR), which is utilized for different applications such as surveillance, remote sensing, medical diagnosis, etc. The original HR image may be corrupted due to various causes such as warping, blurring, and noise addition. SR image reconstruction methods are frequently plagued by obtrusive restorative artifacts such as noise, stair casing effect, and blurring. Thus, striking a balance between smoothness and edge retention is never easy. By enhancing the visual information and autonomous machine perception, this work presented research to improve the effectiveness of SR image reconstruction The reference image is obtained from DIV2K and BSD 100 dataset, these reference LR image is converted as composed LR image using the proposed Lucy Richardson and Modified Mean Wiener (LR-MMWF) Filters. The possessed LR image is provided as input for the stage of bicubic interpolation. Afterward, the initial HR image is obtained as output from the interpolation stage which is given as input for the SR model consisting of fidelity term to decrease residual between the projected HR image and detected LR image. At last, a model based on Bilateral Total Variation (BTV) prior is utilized to improve the stability of the HR image by refining the quality of the image. The results obtained from the performance analysis show that the proposed LR-MMW filter attained better PSNR and Structural Similarity (SSIM) than the existing filters. The results obtained from the experiments show that the proposed LR-MMW filter achieved better performance and provides a higher PSNR value of 31.65dB whereas the Filter-Net and 1D,2D CNN filter achieved PSNR values of 28.95dB and 31.63dB respectively

    A review of morphing aircraft

    No full text
    Aircraft wings are a compromise that allows the aircraft to fly at a range of flight conditions, but the performance at each condition is sub-optimal. The ability of a wing surface to change its geometry during flight has interested researchers and designers over the years as this reduces the design compromises required. Morphing is short for metamorphose: however, there is neither an exact definition nor an agreement between the researchers about the type or the extent of the geometrical changes necessary to qualify an aircraft for the title “shape morphing”. Geometrical parameters that can be affected by morphing solutions can be categorized into: planform alteration (span, sweep and chord), out-of-plane transformation (twist, dihedral/gull, spanwise bending) and airfoil adjustment (camber and thickness).Changing the wing shape or geometry is not new. Historically, morphing solutions always led to penalties in terms of cost, complexity or weight, although in certain circumstances these were overcome by system level benefits. The current trend for highly efficient and “green” aircraft makes such compromises less acceptable, calling for innovative morphing designs able to provide more benefits and fewer drawbacks. Recent developments in “smart” materials may overcome the limitations and enhance the benefits from existing design solutions. The challenge is to design a structure that is capable of withstanding the prescribed loads, but is also able to change its shape: ideally there should be no distinction between the structure and the actuation system. The blending of morphing and smart structures in an integrated approach requires multi-disciplinary thinking from the early development, which significantly increases the overall complexity, even at the preliminary design stage. Morphing is a promising enabling technology for future, next generation aircraft. However, manufacturers and end users are still too skeptical of the benefits to adopt morphing in the near future. Many developed concepts have a technology readiness level that is still very low. The recent explosive growth of satellite services means that UAVs are the technology of choice for many investigations on wing morphing.This paper presents a review of the state of the art on morphing aircraft and focuses on structural, shape changing morphing concepts for both fixed and rotary wings, with particular reference to active systems. Inflatable solutions have been not considered, and skin issues and challenges are not discussed in detail. Although many interesting concepts have been synthesized, few have progressed to wing tunnel testing, and even fewer have flown. Furthermore, any successful wing morphing system must overcome the weight penalty due to the additional actuation systems.<br/

    MicroRNA and Drug Delivery

    No full text

    A Review of Morphing Aircraft

    No full text
    corecore