5 research outputs found
Dispersal limitations and historical factors determine the biogeography of specialized terrestrial protists
Recent studies show that soil eukaryotic diversity is immense and dominated by micro-organisms. However, it is unclear to what extent the processes that shape the distribution of diversity in plants and animals also apply to micro-organisms. Major diversification events in multicellular organisms have often been attributed to long-term climatic and geological processes, but the impact of such processes on protist diversity has received much less attention as their distribution has often been believed to be largely cosmopolitan. Here, we quantified phylogeographical patterns in Hyalosphenia papilio, a large testate amoeba restricted to Holarctic Sphagnum-dominated peatlands, to test if the current distribution of its genetic diversity can be explained by historical factors or by the current distribution of suitable habitats. Phylogenetic diversity was higher in Western North America, corresponding to the inferred geographical origin of the H. papilio complex, and was lower in Eurasia despite extensive suitable habitats. These results suggest that patterns of phylogenetic diversity and distribution can be explained by the history of Holarctic Sphagnum peatland range expansions and contractions in response to Quaternary glaciations that promoted cladogenetic range evolution, rather than the contemporary distribution of suitable habitats. Species distributions were positively correlated with climatic niche breadth, suggesting that climatic tolerance is key to dispersal ability in H. papilio. This implies that, at least for large and specialized terrestrial micro-organisms, propagule dispersal is slow enough that historical processes may contribute to their diversification and phylogeographical patterns and may partly explain their very high overall diversity
Environmental and taxonomic controls of carbon and oxygen stable isotope composition in Sphagnum across broad climatic and geographic ranges
Rain-fed peatlands are dominated by peat mosses (Sphagnum sp.), which for their growth depend on nutrients, water and CO2 uptake from the atmosphere. As the isotopic composition of carbon (12,13C) and oxygen (16,18O) of these Sphagnum mosses are affected by environmental conditions, Sphagnum tissue accumulated in peat constitutes a potential long-term archive that can be used for climate reconstruction. However, there is inadequate understanding of how isotope values are influenced by environmental conditions, which restricts their current use as environmental and palaeoenvironmental indicators. Here we tested (i) to what extent C and O isotopic variation in living tissue of Sphagnum is species-specific and associated with local hydrological gradients, climatic gradients (evapotranspiration, temperature, precipitation) and elevation; (ii) whether the C isotopic signature can be a proxy for net primary productivity (NPP) of Sphagnum; and (iii) to what extent Sphagnum tissue ÎŽ18O tracks the ÎŽ18O isotope signature of precipitation. In total, we analysed 337 samples from 93 sites across North America and Eurasia using two important peat-forming Sphagnum species (S. magellanicum, S. fuscum) common to the Holarctic realm. There were differences in ÎŽ13C values between species. For S. magellanicum ÎŽ13C decreased with increasing height above the water table (HWT, R2 =17%) and was positively correlated to productivity (R2 = 7%). Together these two variables explained 46% of the between-site variation in ÎŽ13C values. For S. fuscum, productivity was the only significant predictor of ÎŽ13C but had low explanatory power (total R2 = 6%). For ÎŽ18O values, approximately 90% of the variation was found between sites. Globally modelled annual ÎŽ18O values in precipitation explained 69% of the between-site variation in tissue ÎŽ18O. S. magellanicum showed lower ÎŽ18O enrichment than S. fuscum (-0.83 â° lower). Elevation and climatic variables were weak predictors of tissue ÎŽ18O values after controlling for ÎŽ18O values of the precipitation. To summarize, our study provides evidence for (a) good predictability of tissue ÎŽ18O values from modelled annual ÎŽ18O values in precipitation, and (b) the possibility of relating tissue ÎŽ13C values to HWT and NPP, but this appears to be species-dependent. These results suggest that isotope composition can be used on a large scale for climatic reconstructions but that such models should be species-specific.</p
Environmental drivers of Sphagnum growth in peatlands across the Holarctic region
The relative importance of global versus local environmental factors for growth and thus carbon uptake of the bryophyte genus Sphagnum â the main peat-former and ecosystem engineer in northern peatlands â remains unclear. 2) We measured length growth and net primary production (NPP) of two abundant Sphagnum species across 99 Holarctic peatlands. We tested the importance of previously proposed abiotic and biotic drivers for peatland carbon uptake (climate, N deposition, water table depth, and vascular plant cover) on these two responses. Employing structural equation models, we explored both indirect and direct effects of drivers on Sphagnum growth. 3) Variation in growth was large, but similar within and between peatlands. Length growth showed a stronger response to predictors than NPP. Moreover, the smaller and denser Sphagnum fuscum growing on hummocks had weaker responses to climatic variation than the larger and looser S. magellanicum growing in the wetter conditions. Growth decreased with increasing vascular plant cover within a site. Between sites, precipitation and temperature increased growth for S. magellanicum. The structural equation models indicated that indirect effects are important. For example, vascular plant cover increased with a deeper water table, increased nitrogen deposition, precipitation and temperature. These factors also influenced Sphagnum growth indirectly by affecting moss shoot density. 4) Synthesis Our results imply that in a warmer climate, S. magellanicum will increase length growth as long as precipitation is not reduced, while S. fuscum is more resistant to decreased precipitation, but also less able to take advantage of increased precipitation and temperature. Such species-specific sensitivity to climate may affect competitive outcomes in a changing environment, and potentially the future carbon sink function of peatlands
Environmental drivers of Sphagnum growth in peatlands across the Holarctic region
The relative importance of global versus local environmental factors for growth and thus carbon uptake of the bryophyte genusSphagnum-the main peat-former and ecosystem engineer in northern peatlands-remains unclear. We measured length growth and net primary production (NPP) of two abundantSphagnumspecies across 99 Holarctic peatlands. We tested the importance of previously proposed abiotic and biotic drivers for peatland carbon uptake (climate, N deposition, water table depth and vascular plant cover) on these two responses. Employing structural equation models (SEMs), we explored both indirect and direct effects of drivers onSphagnumgrowth. Variation in growth was large, but similar within and between peatlands. Length growth showed a stronger response to predictors than NPP. Moreover, the smaller and denserSphagnum fuscumgrowing on hummocks had weaker responses to climatic variation than the larger and looserSphagnum magellanicumgrowing in the wetter conditions. Growth decreased with increasing vascular plant cover within a site. Between sites, precipitation and temperature increased growth forS. magellanicum. The SEMs indicate that indirect effects are important. For example, vascular plant cover increased with a deeper water table, increased nitrogen deposition, precipitation and temperature. These factors also influencedSphagnumgrowth indirectly by affecting moss shoot density. Synthesis. Our results imply that in a warmer climate,S. magellanicumwill increase length growth as long as precipitation is not reduced, whileS. fuscumis more resistant to decreased precipitation, but also less able to take advantage of increased precipitation and temperature. Such species-specific sensitivity to climate may affect competitive outcomes in a changing environment, and potentially the future carbon sink function of peatlands
Environmental drivers of Sphagnum growth in peatlands across the Holarctic region
Abstract
1. The relative importance of global versus local environmental factors for growth and thus carbon uptake of the bryophyte genus Sphagnumâthe main peatâformer and ecosystem engineer in northern peatlandsâremains unclear.
2. We measured length growth and net primary production (NPP) of two abundant Sphagnum species across 99 Holarctic peatlands. We tested the importance of previously proposed abiotic and biotic drivers for peatland carbon uptake (climate, N deposition, water table depth and vascular plant cover) on these two responses. Employing structural equation models (SEMs), we explored both indirect and direct effects of drivers on Sphagnum growth.
3. Variation in growth was large, but similar within and between peatlands. Length growth showed a stronger response to predictors than NPP. Moreover, the smaller and denser Sphagnum fuscum growing on hummocks had weaker responses to climatic variation than the larger and looser Sphagnum magellanicum growing in the wetter conditions. Growth decreased with increasing vascular plant cover within a site. Between sites, precipitation and temperature increased growth for S. magellanicum. The SEMs indicate that indirect effects are important. For example, vascular plant cover increased with a deeper water table, increased nitrogen deposition, precipitation and temperature. These factors also influenced Sphagnum growth indirectly by affecting moss shoot density.
4. Synthesis. Our results imply that in a warmer climate, S. magellanicum will increase length growth as long as precipitation is not reduced, while S. fuscum is more resistant to decreased precipitation, but also less able to take advantage of increased precipitation and temperature. Such speciesâspecific sensitivity to climate may affect competitive outcomes in a changing environment, and potentially the future carbon sink function of peatlands