296 research outputs found
Trends for nanotechnology development in China, Russia, and India
China, Russia, and India are playing an increasingly important role in global nanotechnology research and development (R&D). This paper comparatively inspects the paper and patent publications by these three countries in the Thomson Science Citation Index Expanded (SCI) database and United States Patent and Trademark Office (USPTO) database (1976–2007). Bibliographic, content map, and citation network analyses are used to evaluate country productivity, dominant research topics, and knowledge diffusion patterns. Significant and consistent growth in nanotechnology papers are noted in the three countries. Between 2000 and 2007, the average annual growth rate was 31.43% in China, 11.88% in Russia, and 33.51% in India. During the same time, the growth patterns were less consistent in patent publications: the corresponding average rates are 31.13, 10.41, and 5.96%. The three countries’ paper impact measured by the average number of citations has been lower than the world average. However, from 2000 to 2007, it experienced rapid increases of about 12.8 times in China, 8 times in India, and 1.6 times in Russia. The Chinese Academy of Sciences (CAS), the Russian Academy of Sciences (RAS), and the Indian Institutes of Technology (IIT) were the most productive institutions in paper publication, with 12,334, 6,773, and 1,831 papers, respectively. The three countries emphasized some common research topics such as “Quantum dots,” “Carbon nanotubes,” “Atomic force microscopy,” and “Scanning electron microscopy,” while Russia and India reported more research on nano-devices as compared with China. CAS, RAS, and IIT played key roles in the respective domestic knowledge diffusion
Knowledge politics and new converging technologies: a social epistemological perspective
The “new converging technologies” refers to the prospect of advancing the human condition by the integrated study and application of nanotechnology, biotechnology, information technology and the cognitive sciences - or “NBIC”. In recent years, it has loomed large, albeit with somewhat different emphases, in national science policy agendas throughout the world. This article considers the political and intellectual sources - both historical and contemporary - of the converging technologies agenda. Underlying it is a fluid conception of humanity that is captured by the ethically challenging notion of “enhancing evolution”
Prediction of Emerging Technologies Based on Analysis of the U.S. Patent Citation Network
The network of patents connected by citations is an evolving graph, which
provides a representation of the innovation process. A patent citing another
implies that the cited patent reflects a piece of previously existing knowledge
that the citing patent builds upon. A methodology presented here (i) identifies
actual clusters of patents: i.e. technological branches, and (ii) gives
predictions about the temporal changes of the structure of the clusters. A
predictor, called the {citation vector}, is defined for characterizing
technological development to show how a patent cited by other patents belongs
to various industrial fields. The clustering technique adopted is able to
detect the new emerging recombinations, and predicts emerging new technology
clusters. The predictive ability of our new method is illustrated on the
example of USPTO subcategory 11, Agriculture, Food, Textiles. A cluster of
patents is determined based on citation data up to 1991, which shows
significant overlap of the class 442 formed at the beginning of 1997. These new
tools of predictive analytics could support policy decision making processes in
science and technology, and help formulate recommendations for action
Developing nanotechnology in Latin America
This article investigates the development of nanotechnology in Latin America with a particular focus on Argentina, Brazil, Chile, and Uruguay. Based on data for nanotechnology research publications and patents and suggesting a framework for analyzing the development of R&D networks, we identify three potential strategies of nanotechnology research collaboration. Then, we seek to identify the balance of emphasis upon each of the three strategies by mapping the current research profile of those four countries. In general, we find that they are implementing policies and programs to develop nanotechnologies but differ in their collaboration strategies, institutional involvement, and level of development. On the other hand, we find that they coincide in having a modest industry participation in research and a low level of commercialization of nanotechnologies
COVID-19 therapy target discovery with context-aware literature mining
The abundance of literature related to the widespread COVID-19 pandemic is
beyond manual inspection of a single expert. Development of systems, capable of
automatically processing tens of thousands of scientific publications with the
aim to enrich existing empirical evidence with literature-based associations is
challenging and relevant. We propose a system for contextualization of
empirical expression data by approximating relations between entities, for
which representations were learned from one of the largest COVID-19-related
literature corpora. In order to exploit a larger scientific context by transfer
learning, we propose a novel embedding generation technique that leverages
SciBERT language model pretrained on a large multi-domain corpus of scientific
publications and fine-tuned for domain adaptation on the CORD-19 dataset. The
conducted manual evaluation by the medical expert and the quantitative
evaluation based on therapy targets identified in the related work suggest that
the proposed method can be successfully employed for COVID-19 therapy target
discovery and that it outperforms the baseline FastText method by a large
margin.Comment: Accepted to the 23rd International Conference on Discovery Science
(DS 2020
Measuring co-authorship and networking-adjusted scientific impact
Appraisal of the scientific impact of researchers, teams and institutions
with productivity and citation metrics has major repercussions. Funding and
promotion of individuals and survival of teams and institutions depend on
publications and citations. In this competitive environment, the number of
authors per paper is increasing and apparently some co-authors don't satisfy
authorship criteria. Listing of individual contributions is still sporadic and
also open to manipulation. Metrics are needed to measure the networking
intensity for a single scientist or group of scientists accounting for patterns
of co-authorship. Here, I define I1 for a single scientist as the number of
authors who appear in at least I1 papers of the specific scientist. For a group
of scientists or institution, In is defined as the number of authors who appear
in at least In papers that bear the affiliation of the group or institution. I1
depends on the number of papers authored Np. The power exponent R of the
relationship between I1 and Np categorizes scientists as solitary (R>2.5),
nuclear (R=2.25-2.5), networked (R=2-2.25), extensively networked (R=1.75-2) or
collaborators (R<1.75). R may be used to adjust for co-authorship networking
the citation impact of a scientist. In similarly provides a simple measure of
the effective networking size to adjust the citation impact of groups or
institutions. Empirical data are provided for single scientists and
institutions for the proposed metrics. Cautious adoption of adjustments for
co-authorship and networking in scientific appraisals may offer incentives for
more accountable co-authorship behaviour in published articles.Comment: 25 pages, 5 figure
COVID-19 publications: Database coverage, citations, readers, tweets, news, Facebook walls, Reddit posts
© 2020 The Authors. Published by MIT Press. This is an open access article available under a Creative Commons licence.
The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1162/qss_a_00066The COVID-19 pandemic requires a fast response from researchers to help address biological,
medical and public health issues to minimize its impact. In this rapidly evolving context,
scholars, professionals and the public may need to quickly identify important new studies. In
response, this paper assesses the coverage of scholarly databases and impact indicators
during 21 March to 18 April 2020. The rapidly increasing volume of research, is particularly
accessible through Dimensions, and less through Scopus, the Web of Science, and PubMed.
Google Scholar’s results included many false matches. A few COVID-19 papers from the
21,395 in Dimensions were already highly cited, with substantial news and social media
attention. For this topic, in contrast to previous studies, there seems to be a high degree of
convergence between articles shared in the social web and citation counts, at least in the
short term. In particular, articles that are extensively tweeted on the day first indexed are
likely to be highly read and relatively highly cited three weeks later. Researchers needing wide
scope literature searches (rather than health focused PubMed or medRxiv searches) should
start with Dimensions (or Google Scholar) and can use tweet and Mendeley reader counts as
indicators of likely importance
Should a Sentinel Node Biopsy Be Performed in Patients with High-Risk Breast Cancer?
A negative sentinel lymph node (SLN) biopsy spares many breast cancer patients the complications associated with lymph node irradiation or additional surgery. However, patients at high risk for nodal involvement based on clinical characteristics may remain at unacceptably high risk of axillary disease even after a negative SLN biopsy result. A Bayesian nomogram was designed to combine the probability of axillary disease prior to nodal biopsy with customized test characteristics for an SLN biopsy and provides the probability of axillary disease despite a negative SLN biopsy. Users may individualize the sensitivity of an SLN biopsy based on factors known to modify the sensitivity of the procedure. This tool may be useful in identifying patients who should have expanded upfront exploration of the axilla or comprehensive axillary irradiation
- …