19 research outputs found

    Role of Notch signaling pathway in pathologies of aorta and aortic valve

    Get PDF
    Notch is highly conserved signaling pathway that regulates the development and differentiation of many types of tissues and influences major cellular processes such as cell proliferation, differentiation and apoptosis. Mutations in several Notch signaling components have been associated with a number of congenital heart defects, demonstrating an essential role for Notch both in cardiovascular system development and its maintenance during postnatal life. In particular, mutations in NOTCH1 have been linked to congenital abnormalities of aortic valve and aorta, such as bicuspid aortic valve, increasing risk of aortic dilatation and valve calcification. Therapeutic agents that may influence these disorders are absent to date and the only therapeutic decision is elective surgical intervention. Thus, understanding the mechanisms underlying left ventricular outflow tract malformations become especially important. This study aimed to investigate the role of Notch-dependent cellular and molecular mechanisms in development of aortic and aortic valve pathologies. Using primary cells, first, we sought to compare the cellular functions of endothelial and smooth muscle cells in patients with thoracic aortic aneurysm and healthy donors. Second, since Notch signaling pathway is key regulator of endothelial-to-mesenchymal transition, the process underlying valve formation, we explored whether Notch-dependent endothelial-to-mesenchymal transition is affected in aortic endothelial cells from patients with thoracic aortic aneurysm, associated with bicuspid aortic valve \u2013 common congenital heart malformation. Third, although vascular smooth muscle cells have been considered as the main target of degeneration in the aortic wall, endothelial dysfunction might also be responsible for thoracic aortic aneurysm formation. Therefore, we addressed the role of Notch and Notch-related signaling pathways in shear stress response in endothelial cells from aortic aneurysm and healthy controls. Forth, the involvement of dysregulated Notch pathway in calcification is evident. In this work we sought to reveal early Notch-dependent mechanisms of valve calcification in patients with bicuspid- or tricuspid aortic valve associated calcified stenosis. Our data demonstrate downregulation of smooth muscle as well as endothelial cell specific markers in the patient cells. Cellular proliferation, migration, and synthesis of extracellular matrix proteins are attenuated in the cells of the patients with thoracic aortic aneurysm compared to healthy controls. We show that endothelial cells from persons with aortic aneurysm and bicuspid aortic valve have downregulated Notch signaling and fail to activate Notch-dependent endothelial-to-mesenchymal transition in response to its stimulation by different Notch components. Activity of Wnt and BMP pathways was significantly elevated in endothelial cells from aneurysms. Furthermore, activation of DLL4, SNAIL1, DKK1, TCF4 and BMP2 was attenuated in cells of patients in response to shear stress, implying dysregulated Notch/BMP/WNT cross-talk. We report that the expression pattern of Notch genes is altered in the aortic valve interstitial cells of patients with calcific aortic stenosis compared to those of healthy persons. Interstitial cells from bicuspid calcified valves demonstrated significantly higher sensitivity to stimuli at early stages of induced proosteogenic differentiation and were significantly more sensitive to the activation of proosteogenic OPN, ALP and POSTIN expression by Notch activation. Notchdependent endothelial-to-mesenchymal transition was also more prominent in bicuspid valve derived endothelial cells compared to the cells from calcified tricuspid and healthy valves. This study provides the first direct functional evidence that primary aortic and valvular cells from patients with left ventricle outflow tract pathologies have impaired Notch signaling pathway comparing to healthy donors. In conclusion: 1 - both endothelial and smooth muscle cells of aneurysmal aortic wall have downregulated specific cellular markers and altered functional properties, such as growth rate, apoptosis induction, and extracellular matrix synthesis; 2 \u2013 Notchdependent endothelial-to-mesenhymal transition is attenuated in endothelial cells of patients with thoracic aortic aneurysm and bicuspid aortic valve; 3 - shearstress response is impaired in endothelial cells of the patients with thoracic aortic aneurysm due to altered Notch/BMP/WNT/\u3b2-catenin network; 4 - early events of aortic valve calcification are Notch-dependent and differ in bicuspid and tricuspid aortic valves

    Generation of two iPSC lines (FAMRCi007-A and FAMRCi007-B) from patient with Emery-Dreifuss muscular dystrophy and heart rhythm abnormalities carrying genetic variant LMNA p.Arg249Gln.

    Get PDF
    Human iPSC lines were generated from peripheral blood mononuclear cells of patient carrying LMNA mutation associated with Emery–Dreifuss muscular dystrophy accompanied by atrioventricular block and paroxysmal atrial fibrillation. Reprogramming factors OCT4, KLF4, SOX2, CMYC were delivered using Sendai virus transduction. iPSCs were characterized in order to prove the pluripotency markers expression, normal karyotype, ability to differentiate into three embryonic germ layers. Generated iPSC lines would be useful model to investigate disease development associated with genetic variants in LMNA gene

    Inflammation and Mechanical Stress Stimulate Osteogenic Differentiation of Human Aortic Valve Interstitial Cells

    Get PDF
    Background: Aortic valve calcification is an active proliferative process, where interstitial cells of the valve transform into either myofibroblasts or osteoblast-like cells causing valve deformation, thickening of cusps and finally stenosis. This process may be triggered by several factors including inflammation, mechanical stress or interaction of cells with certain components of extracellular matrix. The matrix is different on the two sides of the valve leaflets. We hypothesize that inflammation and mechanical stress stimulate osteogenic differentiation of human aortic valve interstitial cells (VICs) and this may depend on the side of the leaflet.Methods: Interstitial cells isolated from healthy and calcified human aortic valves were cultured on collagen or elastin coated plates with flexible bottoms, simulating the matrix on the aortic and ventricular side of the valve leaflets, respectively. The cells were subjected to 10% stretch at 1 Hz (FlexCell bioreactor) or treated with 0.1 μg/ml lipopolysaccharide, or both during 24 h. Gene expression of myofibroblast- and osteoblast-specific genes was analyzed by qPCR. VICs cultured in presence of osteogenic medium together with lipopolysaccharide, 10% stretch or both for 14 days were stained for calcification using Alizarin Red.Results: Treatment with lipopolysaccharide increased expression of osteogenic gene bone morphogenetic protein 2 (BMP2) (5-fold increase from control; p = 0.02) and decreased expression of mRNA of myofibroblastic markers: α-smooth muscle actin (ACTA2) (50% reduction from control; p = 0.0006) and calponin (CNN1) (80% reduction from control; p = 0.0001) when cells from calcified valves were cultured on collagen, but not on elastin. Mechanical stretch of VICs cultured on collagen augmented the effect of lipopolysaccharide. Expression of periostin (POSTN) was inhibited in cells from calcified donors after treatment with lipopolysaccharide on collagen (70% reduction from control, p = 0.001), but not on elastin. Lipopolysaccharide and stretch both enhanced the pro-calcific effect of osteogenic medium, further increasing the effect when combined for cells cultured on collagen, but not on elastin.Conclusion: Inflammation and mechanical stress trigger expression of osteogenic genes in VICs in a side-specific manner, while inhibiting the myofibroblastic pathway. Stretch and lipopolysaccharide synergistically increase calcification

    Context-Specific Osteogenic Potential of Mesenchymal Stem Cells

    No full text
    Despite the great progress in the field of bone tissue regeneration, the early initiating mechanisms of osteogenic differentiation are not well understood. Cells capable of osteogenic transformation vary from mesenchymal stem cells of various origins to mural cells of vessels. The mechanisms of pathological calcification are thought to be similar to those of bone formation. Notch signaling has been shown to play an important role in osteogenic differentiation, as well as in pathological calcification. Nevertheless, despite its known tissue- and context-specificity, the information about its role in the osteogenic differentiation of different cells is still limited. We compared mesenchymal stem cells from adipogenic tissue (MSCs) and interstitial cells from the aortic valve (VICs) by their ability to undergo Notch-dependent osteogenic differentiation. We showed differences between the two types of cells in their ability to activate the expression of proosteogenic genes RUNX2, BMP2, BMP4, DLX2, BGLAP, SPRY, IBSP, and SPP1 in response to Notch activation. Untargeted metabolomic profiling also confirms differences between MSCs and VICs in their osteogenic state. Analysis of the activity of RUNX2 and SPP1 promoters shows fine-tuned dose-dependency in response to Notch induction and suggests a direct link between the level of Notch activation, and the proostogenic gene expression and corresponding osteogenic induction. Our data suggest that osteogenic differentiation is a context-dependent process and the outcome of it could be cell-type dependent

    Phenotypic and Functional Changes of Endothelial and Smooth Muscle Cells in Thoracic Aortic Aneurysms

    No full text
    Thoracic aortic aneurysm develops as a result of complex series of events that alter the cellular structure and the composition of the extracellular matrix of the aortic wall. The purpose of the present work was to study the cellular functions of endothelial and smooth muscle cells from the patients with aneurysms of the thoracic aorta. We studied endothelial and smooth muscle cells from aneurysms in patients with bicuspid aortic valve and with tricuspid aortic valve. The expression of key markers of endothelial (CD31, vWF, and VE-cadherin) and smooth muscle (SMA, SM22α, calponin, and vimentin) cells as well extracellular matrix and MMP activity was studied as well as and apoptosis and cell proliferation. Expression of functional markers of endothelial and smooth muscle cells was reduced in patient cells. Cellular proliferation, migration, and synthesis of extracellular matrix proteins are attenuated in the cells of the patients. We show for the first time that aortic endothelial cell phenotype is changed in the thoracic aortic aneurysms compared to normal aortic wall. In conclusion both endothelial and smooth muscle cells from aneurysms of the ascending aorta have downregulated specific cellular markers and altered functional properties, such as growth rate, apoptosis induction, and extracellular matrix synthesis

    The Notch pathway: a novel therapeutic target for cardiovascular diseases?

    No full text
    Introduction: The Notch pathway is involved in determining cell fate during development and postnatally in continuously renewing tissues, such as the endothelium, the epithelium, and in the stem cells pool. The dysregulation of the Notch pathway is one of the causes of limited response, or resistance, to available cancer treatments and novel therapeutic strategies based on Notch inhibition are being investigated in preclinical and clinical studies in oncology. A large body of evidence now shows that the dysregulation of the Notch pathway is also involved in the pathophysiology of cardiovascular diseases (CVDs). Areas covered: This review discusses the molecular mechanisms involving Notch which underlie heart failure, aortic valve calcification, and aortic aneurysm. Expert opinion: Despite the existence of preventive, pharmacological and surgical interventions approaches, CVDs are the first causes of mortality worldwide. The Notch pathway is becoming increasingly recognized as being involved in heart failure, aortic aneurysm and aortic valve calcification, which are among the most common global causes of mortality due to CVDs. As already shown in cancer, the dissection of the biological processes and molecular mechanisms involving Notch should pave the way for new strategies to prevent and cure these diseases

    Deep-Sea Anemones Are Prospective Source of New Antimicrobial and Cytotoxic Compounds

    No full text
    The peculiarities of the survival and adaptation of deep-sea organisms raise interest in the study of their metabolites as promising drugs. In this work, the hemolytic, cytotoxic, antimicrobial, and enzyme-inhibitory activities of tentacle extracts from five species of sea anemones (Cnidaria, orders Actiniaria and Corallimorpharia) collected near the Kuril and Commander Islands of the Far East of Russia were evaluated for the first time. The extracts of Liponema brevicorne and Actinostola callosa demonstrated maximal hemolytic activity, while high cytotoxic activity against murine splenocytes and Ehrlich carcinoma cells was found in the extract of Actinostola faeculenta. The extracts of Corallimorphus cf. pilatus demonstrated the greatest activity against Ehrlich carcinoma cells but were not toxic to mouse spleen cells. Sea anemones C. cf. pilatus and Stomphia coccinea are promising sources of antimicrobial and antifungal compounds, being active against Gram-positive bacteria Bacillus subtilis, Staphylococcus aureus, and yeast Candida albicans. Moreover, all sea anemones contain α-galactosidase inhibitors. Peptide mass fingerprinting of L. brevicorne and C. cf. pilatus extracts provided a wide range of peptides, predominantly with molecular masses of 4000–5900 Da, which may belong to a known or new structural class of toxins. The obtained data allow concluding that deep-sea anemones are a promising source of compounds for drug discovery

    Interstitial cells in calcified aortic valves have reduced differentiation potential and stem cell-like properties.

    No full text
    Valve interstitial cells (VICs) are crucial in the development of calcific aortic valve disease. The purpose of the present investigation was to compare the phenotype, differentiation potential and stem cell-like properties of cells from calcified and healthy aortic valves. VICs were isolated from human healthy and calcified aortic valves. Calcification was induced with osteogenic medium. Unlike VICs from healthy valves, VICs from calcified valves cultured without osteogenic medium stained positively for calcium deposits with Alizarin Red confirming their calcific phenotype. Stimulation of VICs from calcified valves with osteogenic medium increased calcification (p = 0.02), but not significantly different from healthy VICs. When stimulated with myofibroblastic medium, VICs from calcified valves had lower expression of myofibroblastic markers, measured by flow cytometry and RT-qPCR, compared to healthy VICs. Contraction of collagen gel (a measure of myofibroblastic activity) was attenuated in cells from calcified valves (p = 0.04). Moreover, VICs from calcified valves, unlike cells from healthy valves had lower potential to differentiate into adipogenic pathway and lower expression of stem cell-associated markers CD106 (p = 0.04) and aldehyde dehydrogenase (p = 0.04). In conclusion, VICs from calcified aortic have reduced multipotency compared to cells from healthy valves, which should be considered when investigating possible medical treatments of aortic valve calcification

    Inflammation and Mechanical Stress Stimulate Osteogenic Differentiation of Human Aortic Valve Interstitial Cells

    No full text
    Background: Aortic valve calcification is an active proliferative process, where interstitial cells of the valve transform into either myofibroblasts or osteoblast-like cells causing valve deformation, thickening of cusps and finally stenosis. This process may be triggered by several factors including inflammation, mechanical stress or interaction of cells with certain components of extracellular matrix. The matrix is different on the two sides of the valve leaflets. We hypothesize that inflammation and mechanical stress stimulate osteogenic differentiation of human aortic valve interstitial cells (VICs) and this may depend on the side of the leaflet. Methods: Interstitial cells isolated from healthy and calcified human aortic valves were cultured on collagen or elastin coated plates with flexible bottoms, simulating the matrix on the aortic and ventricular side of the valve leaflets, respectively. The cells were subjected to 10% stretch at 1 Hz (FlexCell bioreactor) or treated with 0.1 μg/ml lipopolysaccharide, or both during 24 h. Gene expression of myofibroblast- and osteoblast-specific genes was analyzed by qPCR. VICs cultured in presence of osteogenic medium together with lipopolysaccharide, 10% stretch or both for 14 days were stained for calcification using Alizarin Red. Results: Treatment with lipopolysaccharide increased expression of osteogenic gene bone morphogenetic protein 2 (BMP2) (5-fold increase from control; p = 0.02) and decreased expression of mRNA of myofibroblastic markers: α-smooth muscle actin (ACTA2) (50% reduction from control; p = 0.0006) and calponin (CNN1) (80% reduction from control; p = 0.0001) when cells from calcified valves were cultured on collagen, but not on elastin. Mechanical stretch of VICs cultured on collagen augmented the effect of lipopolysaccharide. Expression of periostin (POSTN) was inhibited in cells from calcified donors after treatment with lipopolysaccharide on collagen (70% reduction from control, p = 0.001), but not on elastin. Lipopolysaccharide and stretch both enhanced the pro-calcific effect of osteogenic medium, further increasing the effect when combined for cells cultured on collagen, but not on elastin. Conclusion: Inflammation and mechanical stress trigger expression of osteogenic genes in VICs in a side-specific manner, while inhibiting the myofibroblastic pathway. Stretch and lipopolysaccharide synergistically increase calcification
    corecore