16 research outputs found

    Towards new background independent representations for Loop Quantum Gravity

    Full text link
    Recently, uniqueness theorems were constructed for the representation used in Loop Quantum Gravity. We explore the existence of alternate representations by weakening the assumptions of the so called LOST uniqueness theorem. The weakened assumptions seem physically reasonable and retain the key requirement of explicit background independence. For simplicity, we restrict attention to the case of gauge group U(1).Comment: 22 pages, minor change

    New insights in quantum geometry

    Full text link
    Quantum geometry, i.e., the quantum theory of intrinsic and extrinsic spatial geometry, is a cornerstone of loop quantum gravity. Recently, there have been many new ideas in this field, and I will review some of them. In particular, after a brief description of the main structures and results of quantum geometry, I review a new description of the quantized geometry in terms of polyhedra, new results on the volume operator, and a way to incorporate a classical background metric into the quantum description. Finally I describe a new type of exponentiated flux operator, and its application to Chern-Simons theory and black holes.Comment: 10 pages, 3 figures; Proceedings of Loops'11, Madrid, submitted to Journal of Physics: Conference Series (JPCS

    Properties of the Volume Operator in Loop Quantum Gravity I: Results

    Full text link
    We analyze the spectral properties of the volume operator of Ashtekar and Lewandowski in Loop Quantum Gravity, which is the quantum analogue of the classical volume expression for regions in three dimensional Riemannian space. Our analysis considers for the first time generic graph vertices of valence greater than four. Here we find that the geometry of the underlying vertex characterizes the spectral properties of the volume operator, in particular the presence of a `volume gap' (a smallest non-zero eigenvalue in the spectrum) is found to depend on the vertex embedding. We compute the set of all non-spatially diffeomorphic non-coplanar vertex embeddings for vertices of valence 5--7, and argue that these sets can be used to label spatial diffeomorphism invariant states. We observe how gauge invariance connects vertex geometry and representation properties of the underlying gauge group in a natural way. Analytical results on the spectrum on 4-valent vertices are included, for which the presence of a volume gap is proved. This paper presents our main results; details are provided by a companion paper arXiv:0706.0382v1.Comment: 36 pages, 7 figures, LaTeX. See also companion paper arXiv:0706.0382v1. Version as published in CQG in 2008. See arXiv:1003.2348 for important remarks regarding the sigma configurations. Subsequent computations have revealed some minor errors, which do not change the qualitative results but modify some of the numbers presented her

    Towards classical geometrodynamics from Group Field Theory hydrodynamics

    Full text link
    We take the first steps towards identifying the hydrodynamics of group field theories (GFTs) and relating this hydrodynamic regime to classical geometrodynamics of continuum space. We apply to GFT mean field theory techniques borrowed from the theory of Bose condensates, alongside standard GFT and spin foam techniques. The mean field configuration we study is, in turn, obtained from loop quantum gravity coherent states. We work in the context of 2d and 3d GFT models, in euclidean signature, both ordinary and colored, as examples of a procedure that has a more general validity. We also extract the effective dynamics of the system around the mean field configurations, and discuss the role of GFT symmetries in going from microscopic to effective dynamics. In the process, we obtain additional insights on the GFT formalism itself.Comment: revtex4, 32 pages. Contribution submitted to the focus issue of the New Journal of Physics on "Classical and Quantum Analogues for Gravitational Phenomena and Related Effects", R. Schuetzhold, U. Leonhardt and C. Maia, Eds; v2: typos corrected, references updated, to match the published versio

    Algebraic Quantum Gravity (AQG) IV. Reduced Phase Space Quantisation of Loop Quantum Gravity

    Full text link
    We perform a canonical, reduced phase space quantisation of General Relativity by Loop Quantum Gravity (LQG) methods. The explicit construction of the reduced phase space is made possible by the combination of 1. the Brown -- Kuchar mechanism in the presence of pressure free dust fields which allows to deparametrise the theory and 2. Rovelli's relational formalism in the extended version developed by Dittrich to construct the algebra of gauge invariant observables. Since the resulting algebra of observables is very simple, one can quantise it using the methods of LQG. Basically, the kinematical Hilbert space of non reduced LQG now becomes a physical Hilbert space and the kinematical results of LQG such as discreteness of spectra of geometrical operators now have physical meaning. The constraints have disappeared, however, the dynamics of the observables is driven by a physical Hamiltonian which is related to the Hamiltonian of the standard model (without dust) and which we quantise in this paper.Comment: 31 pages, no figure
    corecore