185 research outputs found

    Temperature Dependence of Thermopower in Strongly Correlated Multiorbital Systems

    Full text link
    Temperature dependence of thermopower in the multiorbital Hubbard model is studied by using the dynamical mean-field theory with the non-crossing approximation impurity solver. It is found that the Coulomb interaction, the Hund coupling, and the crystal filed splitting bring about non-monotonic temperature dependence of the thermopower, including its sign reversal. The implication of our theoretical results to some materials is discussed.Comment: 3 pages, 3 figure

    Photo-induced insulator-metal transition of a spin-electron coupled system

    Full text link
    The photo-induced metal-insulator transition is studied by the numerical simulation of real-time quantum dynamics of a double-exchange model. The spatial and temporal evolutions of the system during the transition have been revealed including (i) the threshold behavior with respect to the intensity and energy of light, (ii) multiplication of particle-hole (p-h) pairs by a p-h pair of high energy, and (iii) the space-time pattern formation such as (a) the stripe controlled by the polarization of light, (b) coexistence of metallic and insulating domains, and (c) dynamical spontaneous symmetry-breaking associated with the spin spiral formation imposed by the conservation of total spin for small energy-dissipation rates

    Low energy electronic states and triplet pairing in layered cobaltates

    Get PDF
    The structure of the low-energy electronic states in layered cobaltates is considered starting from the Mott insulating limit. We argue that the coherent part of the wave-functions and the Fermi-surface topology at low doping are strongly influenced by spin-orbit coupling of the correlated electrons on the t2gt_{2g} level. An effective t-J model based on mixed spin-orbital states is radically different from that for the cuprates, and supports unconventional, pseudospin-triplet pairing.Comment: 4 pages, 3 figure

    Impact of lithium composition on the thermoelectric properties of the layered cobalt oxide system LixCoO2

    Get PDF
    Thermoelectric properties of the layered cobalt oxide system LixCoO2 were investigated in a wide range of Li composition, 0.98 >= x >= 0.35. Single-phase bulk samples of LixCoO2 were successfully obtained through electrochemical deintercalation of Li from the pristine LiCoO2 phase. While LixCoO2 with x >= 0.94 is semiconductive, the highly Li-deficient phase (0.75 >= x >= 0.35) exhibits metallic conductivity. The magnitude of Seebeck coefficient at 293 K (S293K) significantly depends on the Li content (x). The S293K value is as large as +70 ~ +100 uV/K for x >= 0.94, and it rapidly decreases from +90 uV/K to +10 uV/K as x is lowered within a Li composition range of 0.75 >= x >= 0.50. This behavior is in sharp contrast to the results of x <= 0.40 for which the S293K value is small and independent of x (+10 uV/K), indicating that a discontinuous change in the thermoelectric characteristics takes place at x = 0.40 ~ 0.50. The unusually large Seebeck coefficient and metallic conductivity are found to coexist in a narrow range of Li composition at about x = 0.75. The coexistence, which leads to an enhanced thermoelectric power factor, may be attributed to unusual electronic structure of the two-dimensional CoO2 block.Comment: 29 pages, 1 table, 8 figure
    corecore