97 research outputs found

    An integrated approach to study the impact of fractures distribution on the Ilam-Sarvak carbonate reservoirs: a case study from the Strait of Hormuz, the Persian Gulf

    Get PDF
    Most of the Iranian hydrocarbon reservoirs in the Persian Gulf Basin and the Zagros Fold-Thrust Belt are composed of fractured carbonate rocks. In this regard, determining the spatial distribution of fractures has been a challenging issue. In this study, an integrated approach was applied for understanding the impact of fractures spatial distribution on the Ilam-Sarvak (Cenomanian to Santonian) carbonate reservoir rocks. For this purpose, seismic interpretation techniques along with geomechanical and geostatistical modeling were employed to characterize fractures at different scales. Initially, the relationship between fractures origin and the normal faults was investigated by conducting an in-situ stress analysis. Afterwards, the velocity deviation log (VDL) and fracture intensity log (FIL) were derived as fracture attributes from the interpretation of Formation Micro Imager (FMI) and conventional well logs. A 3D model of VDL and FIL was achieved by using a sequential Gaussian simulation (SGS) method. In order to achieve a more realistic and accurate model of the factures distribution, variations of the shear-wave velocity and geomechanical properties (Young's modulus and Poisson's ratio) were estimated by applying the advanced seismic interpretation techniques in the normal faults domain. The results show that the intensity of fractures increases once they are introduced to the normal faults, especially in the central part of the study area around well#2. Such a fractured zone is verified by fracture density log derived from FMI logs of the mentioned well. Obviously, there is a close-knit relationship between the fracture system and the normal faults. Eventually, secondary porosity caused by features was determined though identification of Hydraulic Flow Units (HFUs). Based on the porosity and permeability data, seven HFUs were determined for the Ilam-Sarvak reservoirs. The very high values of Log FZI indicate the possible presence of fractures. Overall, the fractures contributed to enhance the secondary porosity of the reservoir rocks though increasing matrix permeability. To sum up, the fractures system plays a critical role in controlling reservoir properties especially in the hanging-wall of normal faults where the majority of the macro and micro fractures are distributed

    Resistin, an adipokine with non-generalized actions on sympathetic nerve activity

    Get PDF
    The World Health Organization has called obesity a global epidemic. There is a strong association between body weight gain and blood pressure. A major determinant of blood pressure is the level of activity in sympathetic nerves innervating cardiovascular organs. A characteristic of obesity, in both humans and in animal models, is an increase in sympathetic nerve activity to the skeletal muscle vasculature and to the kidneys. Obesity is now recognized as a chronic, low level inflammatory condition, and pro-inflammatory cytokines are elevated including those produced by adipose tissue. The most well-known adipokine released from fat tissue is leptin. The adipokine, resistin, is also released from adipose tissue. Resistin can act in the central nervous system to influence the sympathetic nerve activity. Here, we review the effects of resistin on sympathetic nerve activity and compare them with leptin. We build an argument that resistin and leptin may have complex interactions. Firstly, they may augment each other as both are excitatory on sympathetic nerves innervating cardiovascular organs; In contrast, they could antagonize each other's actions on brown adipose tissue, a key metabolic organ. These interactions may be important in conditions in which leptin and resistin are elevated, such as in obesity

    Long-Term Survival, Toxicity Profile, and role of F-18 FDG PET/CT scan in Patients with Progressive Neuroendocrine Tumors Following Peptide Receptor Radionuclide Therapy with High Activity In-111 Pentetreotide

    Get PDF
    Aim: To study the long term benefits, toxicity and survival rate in patients with neuroendocrine tumors receiving multiple cycles of high activity In-111 Pentetreotide therapy. Moreover, our secondary aim was to evaluate the value of F-18 FDG PET-CT scan as prognostic indicator in this group of patients

    Functional Promoter -31G>C Variant in Survivin Gene Is Associated with Risk and Progression of Renal Cell Cancer in a Chinese Population

    Get PDF
    BACKGROUND: Survivin is an inhibitor of apoptosis protein and is involved in the occurrence and progression of human malignancies. Recently, a functional polymorphism (-31G>C, rs9904341) in the promoter of survivin has been shown to influence its expression and confer susceptibility to different types of cancer. The present study was aimed to investigate whether the polymorphism also influences susceptibility and progression of renal cell cancer (RCC) in a Chinese population. METHODS: We genotyped this polymorphism using the TaqMan assay in a case-control study comprised of 710 RCC patients and 760 controls. The logistic regression was used to assess the genetic association with occurrence and progression of RCC. RESULTS: Compared with the genotypes containing G allele (GG and GC), we found a statistically significant increased occurrence of RCC associated with the CC genotype [P = 0.006, adjusted odds ratio (OR) = 1.38, 95% confidence interval (CI) = 1.08-1.76]. The polymorphism was associated with risk of developing advanced stage (OR = 2.02, 95%CI = 1.34-3.07) and moderately differentiated (OR = 1.75; 95%CI = 1.20-2.54) RCC. Furthermore, the patients carrying the CC genotype had a significantly greater prevalence of high clinical stage disease (P(trend) = 0.003). Similar results were also observed when we restricted the analysis to clear cell RCC, a major histological type of RCC. CONCLUSIONS: Our results suggest that the functional -31G>C polymorphism in the promoter of survivin may influence the susceptibility and progression of RCC in the Chinese population. Large population-based prospective studies are required to validate our findings

    Modulation of epithelial sodium channel (ENaC) expression in mouse lung infected with Pseudomonas aeruginosa

    Get PDF
    BACKGROUND: The intratracheal instillation of Pseudomonas aeruginosa entrapped in agar beads in the mouse lung leads to chronic lung infection in susceptible mouse strains. As the infection generates a strong inflammatory response with some lung edema, we tested if it could modulate the expression of genes involved in lung liquid clearance, such as the α, β and γ subunits of the epithelial sodium channel (ENaC) and the catalytic subunit of Na(+)-K(+)-ATPase. METHODS: Pseudomonas aeruginosa entrapped in agar beads were instilled in the lung of resistant (BalB/c) and susceptible (DBA/2, C57BL/6 and A/J) mouse strains. The mRNA expression of ENaC and Na(+)-K(+)-ATPase subunits was tested in the lung by Northern blot following a 3 hours to 14 days infection. RESULTS: The infection of the different mouse strains evoked regulation of α and β ENaC mRNA. Following Pseudomonas instillation, the expression of αENaC mRNA decreased to a median of 43% on days 3 and 7 after infection and was still decreased to a median of 45% 14 days after infection (p < 0.05). The relative expression of βENaC mRNA was transiently increased to a median of 241%, 24 h post-infection before decreasing to a median of 43% and 54% of control on days 3 and 7 post-infection (p < 0.05). No significant modulation of γENaC mRNA was detected although the general pattern of expression of the subunit was similar to α and β subunits. No modulation of α(1)Na(+)-K(+)-ATPase mRNA, the catalytic subunit of the sodium pump, was recorded. The distinctive expression profiles of the three subunits were not different, between the susceptible and resistant mouse strains. CONCLUSIONS: These results show that Pseudomonas infection, by modulating ENaC subunit expression, could influence edema formation and clearance in infected lungs

    Integration of CNS survival and differentiation by HIF2α

    Get PDF
    Hypoxia-inducible factor (HIF) 1α and HIF2α and the inhibitor of apoptosis survivin represent prominent markers of many human cancers. They are also widely expressed in various embryonic tissues, including the central nervous system; however, little is known about their functions in embryos. Here, we show that zebrafish HIF2α protects neural progenitor cells and neural differentiation processes by upregulating the survivin orthologues birc5a and birc5b during embryogenesis. Morpholino-mediated knockdown of hif2α reduced the transcription of birc5a and birc5b, induced p53-independent apoptosis and abrogated neural cell differentiation. Depletion of birc5a and birc5b recaptured the neural development defects that were observed in the hif2α morphants. The phenotypes induced by HIF2α depletion were largely rescued by ectopic birc5a and birc5b mRNAs, indicating that Birc5a and Birc5b act downstream of HIF2α. Chromatin immunoprecipitation assay revealed that HIF2α binds to birc5a and birc5b promoters directly to modulate their transcriptions. Knockdown of hif2α, birc5a or birc5b reduced the expression of the cdk inhibitors p27/cdkn1b and p57/cdkn1c and increased ccnd1/cyclin D1 transcription in the surviving neural progenitor cells. The reduction in elavl3/HuC expression and enhanced pcna, nestin, ascl1b and sox3 expression indicate that the surviving neural progenitor cells in hif2α morphants maintain a high proliferation rate without terminally differentiating. We propose that a subset of developmental defects attributed to HIF2α depletion is due in part to the loss of survivin activity

    Secret talk between adipose tissue and central nervous system via secreted factors—an emerging frontier in the neurodegenerative research

    Full text link

    Centrally administered resistin enhances sympathetic nerve activity to the hindlimb but attenuates the activity to brown adipose tissue

    No full text
    Resistin, an adipokine, is believed to act in the brain to influence energy homeostasis. Plasma resistin levels are elevated in obesity and are associated with metabolic and cardiovascular disease. Increased muscle sympathetic nerve activity (SNA) is a characteristic of obesity, a risk factor for diabetes and cardiovascular disease. We hypothesized that resistin affects SNA, which contributes to metabolic and cardiovascular dysfunction. Here we investigated the effects of centrally administered resistin on SNA to muscle (lumbar) and brown adipose tissue (BAT), outputs that influence cardiovascular and energy homeostasis. Overnight-fasted rats were anesthetized, and resistin (7 mu g) was administered into the lateral cerebral ventricle (intracerebroventricular). The lumbar sympathetic nerve trunk or sympathetic nerves supplying BAT were dissected free, and nerve activity was recorded. Arterial blood pressure, heart rate, body core temperature, and BAT temperature were also recorded. Responses to resistin or vehicle were monitored for 4 h after intracerebroventricular administration. Acutely administered resistin increased lumbar SNA but decreased BAT SNA. Mean arterial pressure and heart rate, however, were not significantly affected by resistin. BAT temperature was significantly reduced by resistin, and there was a concomitant fall in body temperature. The findings indicate that resistin has differential effects on SNA to tissues involved in metabolic and cardiovascular regulation. The decreased BAT SNA and the increased lumbar SNA elicited by resistin suggest that it may contribute to the increased muscle SNA and reduced energy expenditure observed in obesity and diabetes

    Central resistin enhances renal sympathetic nerve activity via phosphatidylinositol 3-kinase but reduces the activity to brown adipose tissue via extracellular signal-regulated kinase 1/2

    No full text
    Resistin is an adipokine, originally identified in adipose tissue, and its plasma levels are elevated in obesity. Characteristics of obesity include impaired metabolic regulation and cardiovascular dysfunction, such as increased sympathetic nerve activity (SNA) to the kidney and skeletal muscle vasculature. Resistin can affect energy homeostasis through central mechanisms that include reduced food intake and reduced thermogenesis, and can also increase lumbar SNA via a central action. The present study investigated: (i) the effect of centrally-administered resistin on SNA targeting the kidney and (ii) the intracellular signalling pathways mediating the changes in SNA innervating the kidney and brown adipose tissue (BAT) induced by resistin. Intracerebroventricular resistin (7μg) injected into overnight fasted, anaesthetised rats induced a significant increase in renal SNA by approximately 40%. This response was prevented when phosphatidylinositol 3-kinase (PI3K) was inhibited by i.c.v. administration of LY294002 (5μg). Resistin reduced BAT SNA and this response was delayed by 150min when extracellular-regulated kinase (ERK)1/2 was inhibited by i.c.v. administration of U0126. The findings indicate that resistin increases renal SNA via PI3K and reduces BAT SNA via ERK1/2
    corecore