289 research outputs found

    A gut-to-brain signal of fluid osmolarity controls thirst satiation.

    Get PDF
    Satiation is the process by which eating and drinking reduce appetite. For thirst, oropharyngeal cues have a critical role in driving satiation by reporting to the brain the volume of fluid that has been ingested1-12. By contrast, the mechanisms that relay the osmolarity of ingested fluids remain poorly understood. Here we show that the water and salt content of the gastrointestinal tract are precisely measured and then rapidly communicated to the brain to control drinking behaviour in mice. We demonstrate that this osmosensory signal is necessary and sufficient for satiation during normal drinking, involves the vagus nerve and is transmitted to key forebrain neurons that control thirst and vasopressin secretion. Using microendoscopic imaging, we show that individual neurons compute homeostatic need by integrating this gastrointestinal osmosensory information with oropharyngeal and blood-borne signals. These findings reveal how the fluid homeostasis system monitors the osmolarity of ingested fluids to dynamically control drinking behaviour

    MIR376A is a regulator of starvation-induced autophagy

    Get PDF
    Background: Autophagy is a vesicular trafficking process responsible for the degradation of long-lived, misfolded or abnormal proteins, as well as damaged or surplus organelles. Abnormalities of the autophagic activity may result in the accumulation of protein aggregates, organelle dysfunction, and autophagy disorders were associated with various diseases. Hence, mechanisms of autophagy regulation are under exploration. Methods: Over-expression of hsa-miR-376a1 (shortly MIR376A) was performed to evaluate its effects on autophagy. Autophagy-related targets of the miRNA were predicted using Microcosm Targets and MIRanda bioinformatics tools and experimentally validated. Endogenous miRNA was blocked using antagomirs and the effects on target expression and autophagy were analyzed. Luciferase tests were performed to confirm that 3’ UTR sequences in target genes were functional. Differential expression of MIR376A and the related MIR376B was compared using TaqMan quantitative PCR. Results: Here, we demonstrated that, a microRNA (miRNA) from the DlkI/Gtl2 gene cluster, MIR376A, played an important role in autophagy regulation. We showed that, amino acid and serum starvation-induced autophagy was blocked by MIR376A overexpression in MCF-7 and Huh-7 cells. MIR376A shared the same seed sequence and had overlapping targets with MIR376B, and similarly blocked the expression of key autophagy proteins ATG4C and BECN1 (Beclin 1). Indeed, 3’ UTR sequences in the mRNA of these autophagy proteins were responsive to MIR376A in luciferase assays. Antagomir tests showed that, endogenous MIR376A was participating to the control of ATG4C and BECN1 transcript and protein levels. Moreover, blockage of endogenous MIR376A accelerated starvation-induced autophagic activity. Interestingly, MIR376A and MIR376B levels were increased with different kinetics in response to starvation stress and tissue-specific level differences were also observed, pointing out to an overlapping but miRNA-specific biological role. Conclusions: Our findings underline the importance of miRNAs encoded by the DlkI/Gtl2 gene cluster in stress-response control mechanisms, and introduce MIR376A as a new regulator of autophagy

    Domain Specific Languages for Managing Feature Models: Advances and Challenges

    Get PDF
    International audienceManaging multiple and complex feature models is a tedious and error-prone activity in software product line engineering. Despite many advances in formal methods and analysis techniques, the supporting tools and APIs are not easily usable together, nor unified. In this paper, we report on the development and evolution of the Familiar Domain-Specific Language (DSL). Its toolset is dedicated to the large scale management of feature models through a good support for separating concerns, composing feature models and scripting manipulations. We overview various applications of Familiar and discuss both advantages and identified drawbacks. We then devise salient challenges to improve such DSL support in the near future

    smokeSALUD: exploring the effect of demographic change on the smoking prevalence at municipality level in Austria

    Get PDF
    Background: Reducing the smoking population is still high on the policy agenda, as smoking leads to many preventable diseases, such as lung cancer, heart disease, diabetes, and more. In Austria, data on smoking prevalence only exists at the federal state level. This provides an interesting overview about the current health situation, but for regional planning authorities these data are often insufficient as they can hide pockets of high and low smoking prevalence in certain municipalities. Methods: This paper presents a spatial-temporal change of estimated smokers for municipalities from 2001 and 2011. A synthetic dataset of smokers is built by combining individual large-scale survey data and small area census data using a deterministic spatial microsimulation approach. Statistical analysis, including chi-square test and binary logistic regression, are applied to find the best variables 24 for the simulation model and to validate its results. Results: As no easy-to-use spatial microsimulation software for non-programmers is available yet, a flexible web-based spatial microsimulation application for health decision support (called simSALUD) has been developed and used for these analyses. The results of the simulation show in general a decrease of smoking prevalence within municipalities between 2001 and 2011 and 29 differences within areas are identified. These results are especially valuable to policy decision makers for future planning strategies. Conclusions: This case study shows the application of smokeSALUD to model the spatial-temporal changes in the smoking population in Austria between 2001 and 2011. This is important as no data on smoking exists at this geographical scale (municipality). However, spatial microsimulation models are useful tools to estimate small area health data and to overcome these problems. The simulations and analysis should support health decision makers to identify hot spots of smokers and this should 36 help to show where to spend health resources best in order to reduce health inequalities

    Demonstration of the histopathological and immunohistochemical effects of a novel hemostatic agent, ankaferd blood stopper, on vascular tissue in a rat aortic bleeding model

    Get PDF
    Background: Ankaferd Blood Stopper®(ABS) is a folkloric medicinal plant extract used as a hemostatic agent in traditional Turkish medicine. This experimental study investigated the histopathological and immunohistochemical effects of ABS on vascular tissue in a rat model of aortic bleeding.Methods: Four groups of 11 Wistar albino rats were used. The abdominal aortas of the rats were wounded; an ABS-soaked tampon was applied to rats in Groups 1 and 3, and a plain gauze tampon was applied to rats in Groups 2 and 4 until the bleeding stopped. The bleeding time was recorded. Immediately following sacrificing, the arteriotomy sites from Groups 1 and 2 were removed. The abdominal incisions in Groups 3 and 4 were closed following hemostasis. On Day 7 of the study, Group 3 and 4 rats were sacrificed and the abdominal aorta arteriotomy sites were removed for histopathological and immunohistochemical evaluation.Results: The mean bleeding time in 15 animals in Groups 2 and 4 was 4.9 ± 0.6 s, and in 22 animals in Groups 1 and 3 was 3.1 ± 0.6 s. Distal aortic occlusion was not observed on either Day 1 or 7 in any group. Significantly more widespread and dense endothelial nitric oxide synthase (eNOS) staining was observed in Group 1 animals than Group 2. On Days 1 and 7 after application of ABS, histopathological changes, consisting of necrosis, inflammation, and endothelial cell loss, in the rat abdominal aortas did not differ between Groups 1 and 2. The basophilic discoloration in the ABS group on the operation day was a result of a foreign body reaction and hemosiderin-loaded histiocyte accumulation, which occurred on Day 7.Conclusions: In this study, hemostasis was successfully achieved with ABS in rat abdominal aortas. No histopathological change was found in the rat abdominal aortas between the ABS and control groups on Days 1 and 7. Further studies on the long-term effects of foreign body reactions and hemosiderin-loaded histiocyte accumulation are required. © 2010 Kandemir et al; licensee BioMed Central Ltd

    IBMPFD disease-causing mutant VCP/p97 proteins are targets of autophagic-lysosomal degradation

    Get PDF
    The ubiquitin-proteasome system (UPS) degrades soluble proteins and small aggregates, whereas macroautophagy (autophagy herein) eliminates larger protein aggregates, tangles and even whole organelles in a lysosome-dependent manner. VCP/p97 was implicated in both pathways. VCP/p97 mutations cause a rare multisystem disease called IBMPFD (Inclusion Body Myopathy with Paget's Disease and Frontotemporal Dementia). Here, we studied the role IBMPFD-related mutants of VCP/p97 in autophagy. In contrast with the wild-type VCP/p97 protein or R155C or R191Q mutants, the P137L mutant was aggregate-prone. We showed that, unlike commonly studied R155C or R191Q mutants, the P137L mutant protein stimulated both autophagosome and autolysosome formation. Moreover, P137L mutant protein itself was a substrate of autophagy. Starvation- and mTOR inhibition-induced autophagy led to the degradation of the P137L mutant protein, while preserving the wild-type and functional VCP/p97. Strikingly, similar to the P137L mutant, other IBMPFD-related VCP/p97 mutants, namely R93C and G157R mutants induced autophagosome and autolysosome formation; and G157R mutant formed aggregates that could be cleared by autophagy. Therefore, cellular phenotypes caused by P137L mutant expression were not isolated observations, and some other IBMPFD disease-related VCP/p97 mutations could lead to similar outcomes. Our results indicate that cellular mechanisms leading to IBMPFD disease may be various, and underline the importance of studying different disease-associated mutations in order to better understand human pathologies and tailor mutation-specific treatment strategies
    corecore