141 research outputs found

    Extracting the Mass Dependence and Quantum Numbers of Short-Range Correlated Pairs from A(e,e'p) and A(e,e'pp) Scattering

    Full text link
    The nuclear mass dependence of the number of short-range correlated (SRC) proton-proton (pp) and proton-neutron (pn) pairs in nuclei is a sensitive probe of the dynamics of short-range pairs in the ground state of atomic nuclei. This work presents an analysis of electroinduced single-proton and two-proton knockout measurements off 12C, 27Al, 56Fe, and 208Pb in kinematics dominated by scattering off SRC pairs. The nuclear mass dependence of the observed A(e,e'pp)/12C(e,e'pp) cross-section ratios and the extracted number of pp- and pn-SRC pairs are much softer than the mass dependence of the total number of possible pairs. This is in agreement with a physical picture of SRC affecting predominantly nucleon-nucleon pairs in a nodeless relative-S state of the mean-field basis.Comment: 6 pages, 3 figure

    Probing the Repulsive Core of the Nucleon-Nucleon Interaction via the He-4(e,e\u27pN) Triple-Coincidence Reaction

    Get PDF
    We studied simultaneously the He-4(e,e\u27p), He-4(e,e\u27pp), and He-4(e,e\u27pn) reactions at Q(2) 2(GeV/c)(2) and x(B) \u3e 1, for an (e,e\u27p) missing-momentum range of 400 to 830 MeV/c. The knocked-out proton was detected in coincidence with a proton or neutron recoiling almost back to back to the missing momentum, leaving the residual A = 2 system at low excitation energy. These data were used to identify two-nucleon short-range correlated pairs and to deduce their isospin structure as a function of missing momentum, in a region where the nucleon-nucleon (NN) force is expected to change from predominantly tensor to repulsive. The abundance of neutron- proton pairs is reduced as the nucleon momentum increases beyond similar to 500 MeV/c. The extracted fraction of proton-proton pairs is small and almost independent of the missing momentum. Our data are compared with calculations of two-nucleon momentum distributions in He-4 and discussed in the context of probing the elusive repulsive component of the NN force

    Generalized Contact Formalism Analysis of the ⁴He(e,e′pN) Reaction

    Get PDF
    Measurements of short-range correlations in exclusive 4He (e , e ′ p N) reactions are analyzed using the Generalized Contact Formalism (GCF). We consider both instant-form and light-cone formulations with both the AV18 and local N2LO(1.0) nucleon-nucleon (NN) potentials. We find that kinematic distributions, such as the reconstructed pair opening angle, recoil neutron momentum distribution, and pair center of mass motion, as well as the measured missing energy, missing mass distributions, are all well reproduced by GCF calculations. The missing momentum dependence of the measured 4He (e , e ′ p N) /4He (e , e ′ p) cross-section ratios, sensitive to nature of the NN interaction at short-distacnes, are also well reproduced by GCF calculations using either interaction and formulation. This gives credence to the GCF scale-separated factorized description of the short-distance many-body nuclear wave-function

    Measurement of polarization-transfer to bound protons in carbon and its virtuality dependence

    Full text link
    We measured the ratio Px/PzP_{x}/P_{z} of the transverse to longitudinal components of polarization transferred from electrons to bound protons in 12C^{12}\mathrm{C} by the 12C(e,ep)^{12}\mathrm{C}(\vec{e},e'\vec{p}) process at the Mainz Microtron (MAMI). We observed consistent deviations from unity of this ratio normalized to the free-proton ratio, (Px/Pz)12C/(Px/Pz)1H(P_{x}/P_{z})_{^{12}\mathrm{C}}/(P_{x}/P_{z})_{^{1}\mathrm{H}}, for both ss- and pp-shell knocked out protons, even though they are embedded in averaged local densities that differ by about a factor of two. The dependence of the double ratio on proton virtuality is similar to the one for knocked out protons from 2H^{2}\mathrm{H} and 4He^{4}\mathrm{He}, suggesting a universal behavior. It further implies no dependence on average local nuclear density

    Probing the Repulsive Core of the Nucleon-Nucleon Interaction via the 4He( e, e′ pN) Triple-Coincidence Reaction

    Get PDF
    We studied simultaneously the 4He(e,e′p), 4He (e,e′pp), and 4He( e,e′pn) reactions at Q2 = 2(GeV/c)2 and xB \u3e 1,for an (e,e′p) missing-momentum range of 400 to 830 MeV/c. The knocked-out proton was detected in coincidence with a proton or neutron recoiling almost back to back to the missing momentum, leaving the residual A = 2 system at low excitation energy. These data were used to identify two-nucleon short-range correlated pairs and to deduce their isospin structure as a function of missing momentum, in a region where the nucleon-nucleon (NN) force is expected to change from predominantly tensor to repulsive. The abundance of neutron-proton pairs is reduced as the nucleon momentum increases beyond ∼500 MeV/c. The extracted fraction of proton-proton pairs is small and almost independent of the missing momentum. Our data are compared with calculations of two-nucleon momentum distributions in 4He and discussed in the context of probing the elusive repulsive component of the NN force

    Laser Calibration System for Time of Flight Scintillator Arrays

    Full text link
    A laser calibration system was developed for monitoring and calibrating time of flight (TOF) scintillating detector arrays. The system includes setups for both small- and large-scale scintillator arrays. Following test-bench characterization, the laser system was recently commissioned in experimental Hall B at the Thomas Jefferson National Accelerator Facility for use on the new Backward Angle Neutron Detector (BAND) scintillator array. The system successfully provided time walk corrections, absolute time calibration, and TOF drift correction for the scintillators in BAND. This showcases the general applicability of the system for use on high-precision TOF detectors.Comment: 11 pages, 11 figure
    corecore