141 research outputs found
Extracting the Mass Dependence and Quantum Numbers of Short-Range Correlated Pairs from A(e,e'p) and A(e,e'pp) Scattering
The nuclear mass dependence of the number of short-range correlated (SRC)
proton-proton (pp) and proton-neutron (pn) pairs in nuclei is a sensitive probe
of the dynamics of short-range pairs in the ground state of atomic nuclei. This
work presents an analysis of electroinduced single-proton and two-proton
knockout measurements off 12C, 27Al, 56Fe, and 208Pb in kinematics dominated by
scattering off SRC pairs. The nuclear mass dependence of the observed
A(e,e'pp)/12C(e,e'pp) cross-section ratios and the extracted number of pp- and
pn-SRC pairs are much softer than the mass dependence of the total number of
possible pairs. This is in agreement with a physical picture of SRC affecting
predominantly nucleon-nucleon pairs in a nodeless relative-S state of the
mean-field basis.Comment: 6 pages, 3 figure
Probing the Repulsive Core of the Nucleon-Nucleon Interaction via the He-4(e,e\u27pN) Triple-Coincidence Reaction
We studied simultaneously the He-4(e,e\u27p), He-4(e,e\u27pp), and He-4(e,e\u27pn) reactions at Q(2) 2(GeV/c)(2) and x(B) \u3e 1, for an (e,e\u27p) missing-momentum range of 400 to 830 MeV/c. The knocked-out proton was detected in coincidence with a proton or neutron recoiling almost back to back to the missing momentum, leaving the residual A = 2 system at low excitation energy. These data were used to identify two-nucleon short-range correlated pairs and to deduce their isospin structure as a function of missing momentum, in a region where the nucleon-nucleon (NN) force is expected to change from predominantly tensor to repulsive. The abundance of neutron- proton pairs is reduced as the nucleon momentum increases beyond similar to 500 MeV/c. The extracted fraction of proton-proton pairs is small and almost independent of the missing momentum. Our data are compared with calculations of two-nucleon momentum distributions in He-4 and discussed in the context of probing the elusive repulsive component of the NN force
Generalized Contact Formalism Analysis of the ⁴He(e,e′pN) Reaction
Measurements of short-range correlations in exclusive 4He (e , e ′ p N) reactions are analyzed using the Generalized Contact Formalism (GCF). We consider both instant-form and light-cone formulations with both the AV18 and local N2LO(1.0) nucleon-nucleon (NN) potentials. We find that kinematic distributions, such as the reconstructed pair opening angle, recoil neutron momentum distribution, and pair center of mass motion, as well as the measured missing energy, missing mass distributions, are all well reproduced by GCF calculations. The missing momentum dependence of the measured 4He (e , e ′ p N) /4He (e , e ′ p) cross-section ratios, sensitive to nature of the NN interaction at short-distacnes, are also well reproduced by GCF calculations using either interaction and formulation. This gives credence to the GCF scale-separated factorized description of the short-distance many-body nuclear wave-function
Measurement of polarization-transfer to bound protons in carbon and its virtuality dependence
We measured the ratio of the transverse to longitudinal
components of polarization transferred from electrons to bound protons in
by the process at the
Mainz Microtron (MAMI). We observed consistent deviations from unity of this
ratio normalized to the free-proton ratio,
, for both -
and -shell knocked out protons, even though they are embedded in averaged
local densities that differ by about a factor of two. The dependence of the
double ratio on proton virtuality is similar to the one for knocked out protons
from and , suggesting a universal behavior.
It further implies no dependence on average local nuclear density
Probing the Repulsive Core of the Nucleon-Nucleon Interaction via the 4He( e, e′ pN) Triple-Coincidence Reaction
We studied simultaneously the 4He(e,e′p), 4He (e,e′pp), and 4He( e,e′pn) reactions at Q2 = 2(GeV/c)2 and xB \u3e 1,for an (e,e′p) missing-momentum range of 400 to 830 MeV/c. The knocked-out proton was detected in coincidence with a proton or neutron recoiling almost back to back to the missing momentum, leaving the residual A = 2 system at low excitation energy. These data were used to identify two-nucleon short-range correlated pairs and to deduce their isospin structure as a function of missing momentum, in a region where the nucleon-nucleon (NN) force is expected to change from predominantly tensor to repulsive. The abundance of neutron-proton pairs is reduced as the nucleon momentum increases beyond ∼500 MeV/c. The extracted fraction of proton-proton pairs is small and almost independent of the missing momentum. Our data are compared with calculations of two-nucleon momentum distributions in 4He and discussed in the context of probing the elusive repulsive component of the NN force
Laser Calibration System for Time of Flight Scintillator Arrays
A laser calibration system was developed for monitoring and calibrating time
of flight (TOF) scintillating detector arrays. The system includes setups for
both small- and large-scale scintillator arrays. Following test-bench
characterization, the laser system was recently commissioned in experimental
Hall B at the Thomas Jefferson National Accelerator Facility for use on the new
Backward Angle Neutron Detector (BAND) scintillator array. The system
successfully provided time walk corrections, absolute time calibration, and TOF
drift correction for the scintillators in BAND. This showcases the general
applicability of the system for use on high-precision TOF detectors.Comment: 11 pages, 11 figure
- …