440 research outputs found

    Ruminococcal cellulosome systems from rumen to human

    Get PDF
    This article is protected by copyright. All rights reserved. The authors appreciate the kind assistance of Miriam Lerner (ImmunArray Ltd. Company, Rehovot, Israel) with experiments involving the MicroGrid II arrayer. This research was supported by a grant (No. 1349) to EAB also from the Israel Science Foundation (ISF) and a grant (No. 24/11) issued to RL by The Sidney E. Frank Foundation also through the ISF. Additional support was obtained from the establishment of an Israeli Center of Research Excellence (I-CORE Center No. 152/11) managed by the Israel Science Foundation, from the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel, by the Weizmann Institute of Science Alternative Energy Research Initiative (AERI) and the Helmsley Foundation. The authors also appreciate the support of the European Union, Area NMP.2013.1.1-2: Self-assembly of naturally occurring nanosystems: CellulosomePlus Project number: 604530 and an ERA-IB Consortium (EIB.12.022), acronym FiberFuel. HF and SHD acknowledge support from the Scottish Government Food Land and People programme and from BBSRC grant no. BB/L009951/1. In addition, EAB is grateful for a grant from the F. Warren Hellman Grant for Alternative Energy Research in Israel in support of alternative energy research in Israel administered by the Israel Strategic Alternative Energy Foundation (I-SAEF). E.A.B. is the incumbent of The Maynard I. and Elaine Wishner Chair of Bio-organic ChemistryPeer reviewedPostprin

    Unique Organization of Extracellular Amylases into Amylosomes in the Resistant Starch-Utilizing Human Colonic Firmicutes Bacterium Ruminococcus bromii

    Get PDF
    ACKNOWLEDGMENTS We acknowledge support from BBSRC grant no. BB/L009951/1, from the Scottish government Food, Land and People program, and from the Society for Applied Microbiology. E.A.B. is supported by a grant (no. 1349/13) from the Israel Science Foundation (ISF), Jerusalem, Israel, and by a grant from the United States-Israel Binational Science Foundation (BSF). E.A.B. is the incumbent of the Maynard I. and Elaine Wishner Chair of Bio-organic Chemistry. Thanks are due to Fergus Nicol for proteomic analysis and to Auriane Bernard for enzyme assays on stationary-phase cultures. We also thank Julian Parkhill and Keith Turner (Wellcome Trust Sanger Institute, Cambridge, United Kingdom) for making the R. bromii L2-63 genome sequence available for analysis.Peer reviewedPublisher PD

    A Cell-Surface GH9 Endo-Glucanase Coordinates with Surface Glycan Binding Proteins to Mediate Xyloglucan Uptake in the Gut Symbiont Bacteroides ovatus

    Get PDF
    Dietary fiber is an important food source for members of the human gut microbiome. Members of the dominant Bacteroidetes phylum capture diverse polysaccharides via the action of multiple cell surface proteins encoded within Polysaccharide Utilization Loci (PUL). The independent activities of PUL-encoded glycoside hydrolases (GH) and surface glycan-binding proteins (SGBPs) for the harvest of various glycans have been studied in detail, but how these proteins work together to coordinate uptake is poorly understood. Here, we combine genetic and biochemical approaches to discern the interplay between the BoGH9 endoglucanase and the xyloglucan-binding proteins SGBP-A and SGBP-B from the Bacteroides ovatus Xyloglucan Utilization Locus (XyGUL). The expression of BoGH9, a weakly active xyloglucanase in isolation, is required in a strain that expresses a non-binding version of SGBP-A (SGBP-A*). The crystal structure of the BoGH9 enzyme suggests the molecular basis for its robust activity on mixed-linkage β-glucan compared to xyloglucan. Yet, catalytically inactive site-directed mutants of BoGH9 fail to complement the deletion of the active BoGH9 in a SGBP-A* strain. We also find that SGBP-B is needed in an SGBP-A* background to support growth on xyloglucan, but that the non-binding SGBP-B* protein acts in a dominant negative manner to inhibit growth on xyloglucan. We postulate a model whereby the SGBP-A, SGBP-B and BoGH9 work together at the cell surface, likely within a discrete complex, and that xyloglucan binding by SGBP-B and BoGH9 may facilitate the orientation of the xyloglucan for transfer across the outer membrane

    The two faces of ToxR: activator of ompU , co‐regulator of toxT in Vibrio cholerae

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87152/1/j.1365-2958.2011.07681.x.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/87152/2/MMI_7681_sm_FigureS1_TableS1-2.pd

    SusE facilitates starch uptake independent of starch binding in B. thetaiotaomicron

    Full text link
    Black and white 8x10 acetate negativehttps://digitalmaine.com/arc_george_french_photos_f/1923/thumbnail.jp

    Dynamic responses of B acteroides thetaiotaomicron during growth on glycan mixtures

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98163/1/mmi12228-sup-0001-si.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/98163/2/mmi12228.pd

    Bacterial nitrate assimilation: gene distribution and regulation

    Get PDF
    In the context of the global nitrogen cycle, the importance of inorganic nitrate for the nutrition and growth of marine and freshwater autotrophic phytoplankton has long been recognized. In contrast, the utilization of nitrate by heterotrophic bacteria has historically received less attention because the primary role of these organisms has classically been considered to be the decomposition and mineralization of dissolved and particulate organic nitrogen. In the pre-genome sequence era, it was known that some, but not all, heterotrophic bacteria were capable of growth on nitrate as a sole nitrogen source. However, examination of currently available prokaryotic genome sequences suggests that assimilatory nitrate reductase (Nas) systems are widespread phylogenetically in bacterial and archaeal heterotrophs. Until now, regulation of nitrate assimilation has been mainly studied in cyanobacteria. In contrast, in heterotrophic bacterial strains, the study of nitrate assimilation regulation has been limited to Rhodobacter capsulatus, Klebsiella oxytoca, Azotobacter vinelandii and Bacillus subtilis. In Gram-negative bacteria, the nas genes are subjected to dual control: ammonia repression by the general nitrogen regulatory (Ntr) system and specific nitrate or nitrite induction. The Ntr system is widely distributed in bacteria, whereas the nitrate/nitrite-specific control is variable depending on the organism
    corecore