38 research outputs found
Recommended from our members
Missense mutation of Brain Derived Neurotrophic Factor (BDNF) alters neurocognitive performance in patients with mild traumatic brain injury: a longitudinal study
The predictability of neurocognitive outcomes in patients with traumatic brain injury is not straightforward. The extent and nature of recovery in patients with mild traumatic brain injury (mTBI) are usually heterogeneous and not substantially explained by the commonly known demographic and injury-related prognostic factors despite having sustained similar injuries or injury severity. Hence, this study evaluated the effects and association of the Brain Derived Neurotrophic Factor (BDNF) missense mutations in relation to neurocognitive performance among patients with mTBI. 48 patients with mTBI were prospectively recruited and MRI scans of the brain were performed within an average 10.1 (SD 4.2) hours post trauma with assessment of their neuropsychological performance post full Glasgow Coma Scale (GCS) recovery. Neurocognitive assessments were repeated again at 6 months follow-up. The paired t-test, Cohenâs d effect size and repeated measure ANOVA were performed to delineate statistically significant differences between the groups [wildtype G allele (Val homozygotes) vs. minor A allele (Met carriers)] and their neuropsychological performance across the time point (T1 = baseline/ admission vs. T2 = 6th month follow-up). Minor A allele carriers in this study generally performed more poorly on neuropsychological testing in comparison wildtype G allele group at both time points. Significant mean differences were observed among the wildtype group in the domains of memory (M = -11.44, SD = 10.0, p = .01, d = 1.22), executive function (M = -11.56, SD = 11.7, p = .02, d = 1.05) and overall performance (M = -6.89 SD = 5.3, p = .00, d = 1.39), while the minor A allele carriers showed significant mean differences in the domains of attention (M = -11.0, SD = 13.1, p = .00, d = .86) and overall cognitive performance (M = -5.25, SD = 8.1, p = .01, d = .66).The minor A allele carriers in comparison to the wildtype G allele group, showed considerably lower scores at admission and remained impaired in most domains across the timepoints, although delayed signs of recovery were noted to be significant in the domains attention and overall cognition. In conclusion, the current study has demonstrated the role of the BDNF rs6265 Val66Met polymorphism in influencing specific neurocognitive outcomes in patients with mTBI. Findings were more detrimentally profound among Met allele carriers
Trends in the treatment of lumbar spine fractures in the United States: a socioeconomics perspective
Circulating Brain-Derived Neurotrophic Factor Has Diagnostic and Prognostic Value in Traumatic Brain Injury
Brain-derived neurotrophic factor (BDNF) is important for neuronal survival and regeneration. We investigated the diagnostic and prognostic values of serum BDNF in traumatic brain injury (TBI). We examined serum BDNF in two independent cohorts of TBI cases presenting to the emergency departments (EDs) of the Johns Hopkins Hospital (JHH; n=76) and San Francisco General Hospital (SFGH, n=80), and a control group of JHH ED patients without TBI (n=150). Findings were subsequently validated in the prospective, multi-center Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) Pilot study (n=159). We investigated the association between BDNF, glial fibrillary acidic protein (GFAP), and ubiquitin C-terminal hydrolase-L1 (UCH-L1) and recovery from TBI at 6 months in the TRACK-TBI Pilot cohort. Incomplete recovery was defined as having either post-concussive syndrome or a Glasgow Outcome Scale Extended score <8 at 6 months. Median day-of-injury BDNF concentrations (ng/mL) were lower among TBI cases (JHH TBI, 17.5 and SFGH TBI, 13.8) than in JHH controls (60.3; p=0.0001). Among TRACK-TBI Pilot subjects, median BDNF concentrations (ng/mL) were higher in mild (8.3) than in moderate (4.3) or severe TBI (4.0; p=0.004. In the TRACK-TBI cohort, the 75 (71.4%) subjects with very low BDNF values (i.e., <the 1st percentile for non-TBI controls, <14.2ng/mL) had higher odds of incomplete recovery than those who did not have very low values (odds ratio, 4.0; 95% confidence interval [CI]: 1.5-11.0). The area under the receiver operator curve for discriminating complete and incomplete recovery was 0.65 (95% CI: 0.52-0.78) for BDNF, 0.61 (95% CI: 0.49-0.73) for GFAP, and 0.55 (95% CI: 0.43-0.66) for UCH-L1. The addition of GFAP/UCH-L1 to BDNF did not improve outcome prediction significantly. Day-of-injury serum BDNF is associated with TBI diagnosis and also provides 6-month prognostic information regarding recovery from TBI. Thus, day-of-injury BDNF values may aid in TBI risk stratification