4,474 research outputs found
Logistic Regression: Tight Bounds for Stochastic and Online Optimization
The logistic loss function is often advocated in machine learning and
statistics as a smooth and strictly convex surrogate for the 0-1 loss. In this
paper we investigate the question of whether these smoothness and convexity
properties make the logistic loss preferable to other widely considered options
such as the hinge loss. We show that in contrast to known asymptotic bounds, as
long as the number of prediction/optimization iterations is sub exponential,
the logistic loss provides no improvement over a generic non-smooth loss
function such as the hinge loss. In particular we show that the convergence
rate of stochastic logistic optimization is bounded from below by a polynomial
in the diameter of the decision set and the number of prediction iterations,
and provide a matching tight upper bound. This resolves the COLT open problem
of McMahan and Streeter (2012)
Quantum vortex tunneling in thin films
Cuprate films offer a unique opportunity to observe vortex tunneling effects,
due to their unusually low superfluid density and short coherence length. Here,
we measure the magnetoresistance (\textit{MR}) due to vortex motion of a long
meander line of a superconducting film made of underdoped
. At low temperatures (\textit{T}), the \textit{MR}
shows a significant deviation from Arrhenius activation. The data is consistent
with two dimensional Variable Range Hopping (VRH) of single vortices, i.e.
. The VRH temperature scale depends on the
vortex tunneling rates between pinning sites. We discuss its magnitude with
respect to estimated parameters of the meander thin film.Comment: 5 figure
A study of the ferromagnetic transition of in nanometer thick bilayers with , , Au and Cr: Signature of injected carriers in the pseudogap regime
The hypothesis regarding the existence of uncorrelated pre-formed pairs in
the pseudogap regime of superconducting is tested experimentally
using bilayers of and the itinerant ferromagnet . In
our study, we monitor the influence of on , the
ferromagnetic ordering temperature of . Here, is the temperature
of maximum dM/dT or dR/dT where M and R are the magnetization and resistance of
, respectively. We compare the results with similar measurements
carried out on bilayers of , and with
. We find that in bilayers made of underdoped 10 nm /5
nm , the values are shifted to lower temperatures by up to 6-8 K
as compared to K of the 5 nm thick reference film.
In contrast, in the other type of bilayers, which are not in the pseudogap
regime near , only a smaller shift of up to 2 K is observed. These
differences are discussed in terms of a proximity effect, where carriers from
the layer are injected into the layer and vice versa.
We suggest that correlated electrons in the pseudogap regime of
are responsible for the observed large shifts.Comment: 9 figure
Conformative Filtering for Implicit Feedback Data
Implicit feedback is the simplest form of user feedback that can be used for
item recommendation. It is easy to collect and is domain independent. However,
there is a lack of negative examples. Previous work tackles this problem by
assuming that users are not interested or not as much interested in the
unconsumed items. Those assumptions are often severely violated since
non-consumption can be due to factors like unawareness or lack of resources.
Therefore, non-consumption by a user does not always mean disinterest or
irrelevance. In this paper, we propose a novel method called Conformative
Filtering (CoF) to address the issue. The motivating observation is that if
there is a large group of users who share the same taste and none of them have
consumed an item before, then it is likely that the item is not of interest to
the group. We perform multidimensional clustering on implicit feedback data
using hierarchical latent tree analysis (HLTA) to identify user `tastes' groups
and make recommendations for a user based on her memberships in the groups and
on the past behavior of the groups. Experiments on two real-world datasets from
different domains show that CoF has superior performance compared to several
common baselines
Anomalous proximity effect in gold coated (110) films: Penetration of the Andreev bound states
Scanning tunneling spectroscopy of (110) bi-layers
reveal a proximity effect markedly different from the conventional one. While
proximity-induced mini-gaps rarely appear in the Au layer, the Andreev bound
states clearly penetrate into the metal. Zero bias conductance peaks are
measured on Au layers thinner than 7 nm with magnitude similar to those
detected on the bare superconductor films. The peaks then decay abruptly with
Au thickness and disappear above 10 nm. This length is shorter than the normal
coherence length and corresponds to the (ballistic) mean free path.Comment: 5 prl format pages, 4 figures, to be published in PR
Computer numerical control vertical machining centre feed drive modelling using the transmission line technique
This study presents a novel application of the Transmission Line Matrix Method (TLM) for the modelling of the dynamic behaviour of non-linear hybrid systems for CNC machine tool drives. The application of the TLM technique implies the dividing of the ball-screw shaft into a number of identical elements in order to achieve the synchronisation of events in the simulation, and to provide an acceptable resolution according to the maximum frequency of interest. This entails the use of a high performance computing system with due consideration to the small time steps being applied in the simulation. Generally, the analysis of torsion and axial dynamic effects on a shaft implies the development of independent simulated models. This study presents a new procedure for the modelling of a ball-screw shaft by the synchronisation of the axial and torsion dynamics into the same model. The model parameters were obtained with equipments such as laser interferometer, ball bar, electronic levels, signal acquisition systems etc. The MTLM models for single and two-axis configurations have been simulated and matches well with the measured responses of machines. The new modelling approach designated the Modified Transmission Line Method (MTLM) extends the TLM approach retaining all its inherent qualities but gives improved convergence and processing speeds. Further work since, not the subject of this paper, have identified its potential for real time application
Recommended from our members
Optimal control of an assembly system with demand for the end-product and intermediate components
This article considers the production and admission control decisions for a two-stage manufacturing system where intermediate components are produced to stock in the first stage and an end-product is assembled from these components through a second-stage assembly operation. The firm faces two types of demand. The demand for the end-product is satisfied immediately if there are available products in inventory while the firm has the option to accept the order for later delivery or to reject it when no inventory is available. Demand for intermediate components may be accepted or rejected to keep components available for assembly purposes. The structure of demand admission, component production and product assembly decisions are characterized. The proposed model is extended to take into account multiple customer classes and a more general revenue collecting scheme where only an upfront partial payment is collected if a customer demand is accepted for future delivery with the remaining revenue received upon delivery. Since the optimal policy structure is rather complex and defined by switching surfaces in a multidimensional space, a simple heuristic policy is proposed for which the computational load grows linearly with the number of products and its performance is tested under a variety of example problems
- β¦