42 research outputs found

    Disentangling Extraction and Reasoning in Multi-hop Spatial Reasoning

    Full text link
    Spatial reasoning over text is challenging as the models not only need to extract the direct spatial information from the text but also reason over those and infer implicit spatial relations. Recent studies highlight the struggles even large language models encounter when it comes to performing spatial reasoning over text. In this paper, we explore the potential benefits of disentangling the processes of information extraction and reasoning in models to address this challenge. To explore this, we design various models that disentangle extraction and reasoning(either symbolic or neural) and compare them with state-of-the-art(SOTA) baselines with no explicit design for these parts. Our experimental results consistently demonstrate the efficacy of disentangling, showcasing its ability to enhance models' generalizability within realistic data domains.Comment: Accepted in EMNLP-Finding 202

    Transfer Learning with Synthetic Corpora for Spatial Role Labeling and Reasoning

    Full text link
    Recent research shows synthetic data as a source of supervision helps pretrained language models (PLM) transfer learning to new target tasks/domains. However, this idea is less explored for spatial language. We provide two new data resources on multiple spatial language processing tasks. The first dataset is synthesized for transfer learning on spatial question answering (SQA) and spatial role labeling (SpRL). Compared to previous SQA datasets, we include a larger variety of spatial relation types and spatial expressions. Our data generation process is easily extendable with new spatial expression lexicons. The second one is a real-world SQA dataset with human-generated questions built on an existing corpus with SPRL annotations. This dataset can be used to evaluate spatial language processing models in realistic situations. We show pretraining with automatically generated data significantly improves the SOTA results on several SQA and SPRL benchmarks, particularly when the training data in the target domain is small.Comment: The 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP 2022

    NavHint: Vision and Language Navigation Agent with a Hint Generator

    Full text link
    Existing work on vision and language navigation mainly relies on navigation-related losses to establish the connection between vision and language modalities, neglecting aspects of helping the navigation agent build a deep understanding of the visual environment. In our work, we provide indirect supervision to the navigation agent through a hint generator that provides detailed visual descriptions. The hint generator assists the navigation agent in developing a global understanding of the visual environment. It directs the agent's attention toward related navigation details, including the relevant sub-instruction, potential challenges in recognition and ambiguities in grounding, and the targeted viewpoint description. To train the hint generator, we construct a synthetic dataset based on landmarks in the instructions and visible and distinctive objects in the visual environment. We evaluate our method on the R2R and R4R datasets and achieve state-of-the-art on several metrics. The experimental results demonstrate that generating hints not only enhances the navigation performance but also helps improve the interpretability of the agent's actions

    MetaReVision: Meta-Learning with Retrieval for Visually Grounded Compositional Concept Acquisition

    Full text link
    Humans have the ability to learn novel compositional concepts by recalling and generalizing primitive concepts acquired from past experiences. Inspired by this observation, in this paper, we propose MetaReVision, a retrieval-enhanced meta-learning model to address the visually grounded compositional concept learning problem. The proposed MetaReVision consists of a retrieval module and a meta-learning module which are designed to incorporate retrieved primitive concepts as a supporting set to meta-train vision-anguage models for grounded compositional concept recognition. Through meta-learning from episodes constructed by the retriever, MetaReVision learns a generic compositional representation that can be fast updated to recognize novel compositional concepts. We create CompCOCO and CompFlickr to benchmark the grounded compositional concept learning. Our experimental results show that MetaReVision outperforms other competitive baselines and the retrieval module plays an important role in this compositional learning process

    GIPCOL: Graph-Injected Soft Prompting for Compositional Zero-Shot Learning

    Full text link
    Pre-trained vision-language models (VLMs) have achieved promising success in many fields, especially with prompt learning paradigm. In this work, we propose GIP-COL (Graph-Injected Soft Prompting for COmpositional Learning) to better explore the compositional zero-shot learning (CZSL) ability of VLMs within the prompt-based learning framework. The soft prompt in GIPCOL is structured and consists of the prefix learnable vectors, attribute label and object label. In addition, the attribute and object labels in the soft prompt are designated as nodes in a compositional graph. The compositional graph is constructed based on the compositional structure of the objects and attributes extracted from the training data and consequently feeds the updated concept representation into the soft prompt to capture this compositional structure for a better prompting for CZSL. With the new prompting strategy, GIPCOL achieves state-of-the-art AUC results on all three CZSL benchmarks, including MIT-States, UT-Zappos, and C-GQA datasets in both closed and open settings compared to previous non-CLIP as well as CLIP-based methods. We analyze when and why GIPCOL operates well given the CLIP backbone and its training data limitations, and our findings shed light on designing more effective prompts for CZSLComment: WACV2

    Knowledge Graphs Effectiveness in Neural Machine Translation Improvement

    Get PDF
    Neural Machine Translation (NMT) systems require a massive amount of Maintaining semantic relations between words during the translation process yields more accurate target-language output from Neural Machine Translation (NMT). Although difficult to achieve from training data alone, it is possible to leverage Knowledge Graphs (KGs) to retain source-language semantic relations in the corresponding target-language translation. The core idea is to use KG entity relations as embedding constraints to improve the mapping from source to target. This paper describes two embedding constraints, both of which employ Entity Linking (EL)---assigning a unique identity to entities---to associate words in training sentences with those in the KG: (1) a monolingual embedding constraint that supports an enhanced semantic representation of the source words through access to relations between entities in a KG; and (2) a bilingual embedding constraint that forces entity relations in the source-language to be carried over to the corresponding entities in the target-language translation. The method is evaluated for English-Spanish translation exploiting Freebase as a source of knowledge. Our experimental results show that exploiting KG information not only decreases the number of unknown words in the translation but also improves translation quality
    corecore