70 research outputs found

    Abundance and Distribution of Enteric Bacteria and Viruses in Coastal and Estuarine Sediments—a Review

    Get PDF
    The long term survival of fecal indicator organisms (FIOs) and human pathogenic microorganisms in sediments is important from a water quality, human health and ecological perspective. Typically, both bacteria and viruses strongly associate with particulate matter present in freshwater, estuarine and marine environments. This association tends to be stronger in finer textured sediments and is strongly influenced by the type and quantity of clay minerals and organic matter present. Binding to particle surfaces promotes the persistence of bacteria in the environment by offering physical and chemical protection from biotic and abiotic stresses. How bacterial and viral viability and pathogenicity is influenced by surface attachment requires further study. Typically, long-term association with surfaces including sediments induces bacteria to enter a viable-but-non-culturable (VBNC) state. Inherent methodological challenges of quantifying VBNC bacteria may lead to the frequent under-reporting of their abundance in sediments. The implications of this in a quantitative risk assessment context remain unclear. Similarly, sediments can harbor significant amounts of enteric viruses, however, the factors regulating their persistence remains poorly understood. Quantification of viruses in sediment remains problematic due to our poor ability to recover intact viral particles from sediment surfaces (typically <10%), our inability to distinguish between infective and damaged (non-infective) viral particles, aggregation of viral particles, and inhibition during qPCR. This suggests that the true viral titre in sediments may be being vastly underestimated. In turn, this is limiting our ability to understand the fate and transport of viruses in sediments. Model systems (e.g., human cell culture) are also lacking for some key viruses, preventing our ability to evaluate the infectivity of viruses recovered from sediments (e.g., norovirus). The release of particle-bound bacteria and viruses into the water column during sediment resuspension also represents a risk to water quality. In conclusion, our poor process level understanding of viral/bacterial-sediment interactions combined with methodological challenges is limiting the accurate source apportionment and quantitative microbial risk assessment for pathogenic organisms associated with sediments in aquatic environments

    Minimizing Errors in RT-PCR Detection and Quantification of SARS-CoV-2 RNA for Wastewater Surveillance

    Get PDF
    Wastewater surveillance for pathogens using the reverse transcription-polymerase chain reaction (RT-PCR) is an effective, resource-efficient tool for gathering additional community-level public health information, including the incidence and/or prevalence and trends of coronavirus disease-19 (COVID-19). Surveillance of SARS-CoV-2 in wastewater may provide an early-warning signal of COVID-19 infections in a community. The capacity of the world’s environmental microbiology and virology laboratories for SARS-CoV-2 RNA characterization in wastewater is rapidly increasing. However, there are no standardized protocols nor harmonized quality assurance and quality control (QA/QC) procedures for SARS-CoV-2 wastewater surveillance. This paper is a technical review of factors that can lead to false-positive and -negative errors in the surveillance of SARS-CoV-2, culminating in recommendations and strategies that can be implemented to identify and mitigate these errors. Recommendations include, stringent QA/QC measures, representative sampling approaches, effective virus concentration and efficient RNA extraction, amplification inhibition assessment, inclusion of sample processing controls, and considerations for RT-PCR assay selection and data interpretation. Clear data interpretation guidelines (e.g., determination of positive and negative samples) are critical, particularly during a low incidence of SARS-CoV-2 in wastewater. Corrective and confirmatory actions must be in place for inconclusive and/or potentially significant results (e.g., initial onset or reemergence of COVID-19 in a community). It will also be prudent to perform inter-laboratory comparisons to ensure results are reliable and interpretable for ongoing and retrospective analyses. The strategies that are recommended in this review aim to improve SARS-CoV-2 characterization for wastewater surveillance applications. A silver lining of the COVID-19 pandemic is that the efficacy of wastewater surveillance was demonstrated during this global crisis. In the future, wastewater will play an important role in the surveillance of a range of other communicable diseases.Highlights: Harmonized QA/QC procedures for SARS-CoV-2 wastewater surveillance are lacking; Wastewater analysis protocols are not optimized for trace analysis of viruses; False-positive and -negative errors have consequences for public health responses; Inter-laboratory studies utilizing standardized reference materials and protocols are needed.info:eu-repo/semantics/publishedVersio

    Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance

    Get PDF
    Wastewater surveillance for pathogens using reverse transcription-polymerase chain reaction (RT-PCR) is an effective and resource-efficient tool for gathering community-level public health information, including the incidence of coronavirus disease-19 (COVID-19). Surveillance of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) in wastewater can potentially provide an early warning signal of COVID-19 infections in a community. The capacity of the world's environmental microbiology and virology laboratories for SARS-CoV-2 RNA characterization in wastewater is increasing rapidly. However, there are no standardized protocols or harmonized quality assurance and quality control (QA/QC) procedures for SARS-CoV-2 wastewater surveillance. This paper is a technical review of factors that can cause false-positive and false-negative errors in the surveillance of SARS-CoV-2 RNA in wastewater, culminating in recommended strategies that can be implemented to identify and mitigate some of these errors. Recommendations include stringent QA/QC measures, representative sampling approaches, effective virus concentration and efficient RNA extraction, PCR inhibition assessment, inclusion of sample processing controls, and considerations for RT-PCR assay selection and data interpretation. Clear data interpretation guidelines (e.g., determination of positive and negative samples) are critical, particularly when the incidence of SARS-CoV-2 in wastewater is low. Corrective and confirmatory actions must be in place for inconclusive results or results diverging from current trends (e.g., initial onset or reemergence of COVID-19 in a community). It is also prudent to perform interlaboratory comparisons to ensure results' reliability and interpretability for prospective and retrospective analyses. The strategies that are recommended in this review aim to improve SARS-CoV-2 characterization and detection for wastewater surveillance applications. A silver lining of the COVID-19 pandemic is that the efficacy of wastewater surveillance continues to be demonstrated during this global crisis. In the future, wastewater should also play an important role in the surveillance of a range of other communicable diseases

    Discrimination of Human and Non-Human Sources of Pollution in Gulf of Mexico Waters by Microbial Source Tracking Methods and the Investigation of the Influence of Environmental Factors on \u3ci\u3eEscherichia coli\u3c/i\u3e Survival

    Get PDF
    Water quality worldwide is assessed by enumeration of fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli, and enterococci) intended to act as surrogates for human enteric pathogens. In environmental waters, this predictive relationship is confounded by many possible sources of FIB with varying implications for human health. Many physico-chemical and biological factors influence the fate of enteric pathogens and FIB in aquatic habitats, but are poorly understood, thus limiting our understanding of the usefulness of FIB as fecal pollution indicators. These studies explored the field application of a “toolbox” approach to microbial source tracking (MST) intended to discriminate between human and non-human fecal pollution: a) in a Florida estuary used for shellfishing and recreational activities and b) at public beaches before and after remediation of wastewater infrastructure. Lastly, the effects of environmental factors (sediments, protozoa, sunlight) on survival of culturable E. coli were investigated in freshwater and seawater mesocosms simulating environmental conditions. Detection of a human- associated MST marker (the esp gene of Enterococcus faecium) at sites with suspected sewage contamination indicated that human fecal pollution is impacting water quality in Wakulla County, while Lagrangian drifters designed to follow current and tidal movement suggested that local hydrology plays an important role in bacterial transport and deposition pathways. Elevated FIB concentrations and frequent detection of human-associated MST markers (esp and human polyomaviruses) identified human sewage pollution at a public beach, facilitating remediation efforts (sewage main repair, removal of portable/abandoned restrooms), followed by significant decreases in FIB concentrations and MST marker detection. These studies show that comprehensive microbial water quality assessment can reliably identify contamination sources, thereby improving pollution mitigation and restoring recreational water quality. Protozoan predation, freshwater vs. seawater habitat and sediment vs. water column location affected the concentration of culturable E. coli in outdoor mesocosms. Sediments offered a refuge from predation where freshwater vs. seawater habitat was amore important determinant of survival. These findings provide important insight into the ecology of E. coli and their natural predators in aquatic habitats and underscore the inherent effect different habitats play in their survival

    A Small Volume Procedure for Viral Concentration from Water

    No full text

    Functional segregation within the pelvic nerve of male rats: a meso- and microscopic analysis

    Get PDF
    The pelvic splanchnic nerves are essential for pelvic organ function and have been proposed as targets for neuromodulation. We have focused on the rodent homologue of these nerves, the pelvic nerves. Our goal was to define within the pelvic nerve the projections of organ-specific sensory axons labelled by microinjection of neural tracer (cholera toxin, subunit B) into the bladder, urethra or rectum. We also examined the location of peptidergic sensory axons within the pelvic nerves to determine whether they aggregated separately from sacral preganglionic and paravertebral sympathetic postganglionic axons travelling in the same nerve. To address these aims, microscopy was performed on the major pelvic ganglion (MPG) with attached pelvic nerves, microdissected from young adult male Sprague-Dawley rats (6-8 weeks old) and processed as whole mounts for fluorescence immunohistochemistry. The pelvic nerves were typically composed of five discrete fascicles. Each fascicle contained peptidergic sensory, cholinergic preganglionic and noradrenergic postganglionic axons. Sensory axons innervating the lower urinary tract (LUT) consistently projected in specific fascicles within the pelvic nerves, whereas sensory axons innervating the rectum projected in a complementary group of fascicles. These discrete aggregations of organ-specific sensory projections could be followed along the full length of the pelvic nerves. From the junction of the pelvic nerve with the MPG, sensory axons immunoreactive for calcitonin gene-related peptide (CGRP) showed several distinct patterns of projection: some projected directly to the cavernous nerve, others projected directly across the surface of the MPG to the accessory nerves and a third class entered the MPG, encircling specific cholinergic neurons projecting to the LUT. A subpopulation of preganglionic inputs to noradrenergic MPG neurons also showed CGRP immunoreactivity. Together, these studies reveal new molecular and structural features of the pelvic nerves and suggest functional targets of sensory nerves in the MPG. These anatomical data will facilitate the design of experimental bioengineering strategies to specifically modulate each axon class

    Relationships between Microbial Indicators and Pathogens in Recreational Water Settings

    Get PDF
    Fecal pollution of recreational waters can cause scenic blight and pose a threat to public health, resulting in beach advisories and closures. Fecal indicator bacteria (total and fecal coliforms, Escherichia coli, and enterococci), and alternative indicators of fecal pollution (Clostridium perfringens and bacteriophages) are routinely used in the assessment of sanitary quality of recreational waters. However, fecal indicator bacteria (FIB), and alternative indicators are found in the gastrointestinal tract of humans, and many other animals and therefore are considered general indicators of fecal pollution. As such, there is room for improvement in terms of their use for informing risk assessment and remediation strategies. Microbial source tracking (MST) genetic markers are closely associated with animal hosts and are used to identify fecal pollution sources. In this review, we examine 73 papers generated over 40 years that reported the relationship between at least one indicator and one pathogen group or species. Nearly half of the reports did not include statistical analysis, while the remainder were almost equally split between those that observed statistically significant relationships and those that did not. Statistical significance was reported less frequently in marine and brackish waters compared to freshwater, and the number of statistically significant relationships was considerably higher in freshwater (p \u3c 0.0001). Overall, significant relationships were more commonly reported between FIB and pathogenic bacteria or protozoa, compared to pathogenic viruses (p: 0.0022–0.0005), and this was more pronounced in freshwater compared to marine. Statistically significant relationships were typically noted following wet weather events and at sites known to be impacted by recent fecal pollution. Among the studies that reported frequency of detection, FIB were detected most consistently, followed by alternative indicators. MST markers and the three pathogen groups were detected least frequently. This trend was mirrored by reported concentrations for each group of organisms (FIB \u3e alternative indicators \u3e MST markers \u3e pathogens). Thus, while FIB, alternative indicators, and MST markers continue to be suitable indicators of fecal pollution, their relationship with waterborne pathogens, particularly viruses, is tenuous at best and influenced by many different factors such as frequency of detection, variable shedding rates, differential fate and transport characteristics, as well as a broad range of site-specific factors such as the potential for the presence of a complex mixture of multiple sources of fecal contamination and pathogens

    Secondary headaches - red and green flags and their significance for diagnostics

    No full text
    A small percentage of patients suffer from a secondary headache syndrome. It is imperative that clinicians are able to differentiate primary headache syndromes from secondary headache syndromes, as failure to do so significantly worsens morbidity and mortality. Recent advances in our understanding of pathobiological mechanisms offer useful information on these enigmatic disorders. We now understand that the causes of secondary headache syndromes can vary significantly – these may be infectious, inflammatory, vascular, traumatic or structural in origin.A well-taken history and targeted physical examination coupled with appropriate investigations can enable these syndromes to be recognized consistently and thus allow their timely and appropriate treatment. Along with their epidemiology, some of their key characteristics shall thus be discussed in this review so as to aid the busy clinician at the bedside. Red flags including sudden onset, high pain intensity, pattern of change of a preexisting headache, focal neurological signs or seizure, systemic signs and precipitation by physical activity can guide the clinician to suspect a secondary headache. Importantly a preexisting headache is not an exclusion of a secondary headache – it might even be a predisposition in certain cases

    A fully nonlinear viscohyperelastic model for the brain tissue applicable to dynamic rates

    No full text
    Understanding the mechanical response of the brain to external loadings is of critical importance in investigating the pathological conditions of this tissue during injurious conditions. Such injurious loadings may occur at high rates, for example among others, during road traffic or sport accidents, falls, or due to explosions. Hence, investigating the injury mechanism and design of protective devices for the brain requires constitutive modeling of this tissue at such rates. Accordingly, this paper is aimed at critically investigating the physical background for viscohyperelastic modeling of the brain tissue with scrutinizing the elastic fields pertinent to large, time dependent deformations, and developing a fully nonlinear multimode Maxwell model that can mathematically explain such deformations. The proposed model can be calibrated using the simple monotonic uniaxial deformation of the sample extracted from the tissue, and does not require additional information from relaxation or creep experiments. The performance of the proposed model is examined using the experimental results of two different studies, which reveals a desirable agreement. The usefulness, limitations, and future developments of the proposed model are discussed in this paper

    An Indirect Indentation Method for Evaluating the Linear Viscoelastic Properties of the Brain Tissue

    No full text
    Indentation experiments offer a robust, fast, and repeatable testing method for evaluating the mechanical properties of the solid-state materials in a wide stiffness range. With the advantage of requiring a minimal sample preparation and multiple tests on a small piece of specimen, this method has recently become a popular technique for measuring the elastic properties of the biological materials, especially the brain tissue whose ultrasoft nature makes its mechanical characterization very challenging. Nevertheless, some limitations are associated with the indentation of the brain tissue, such as improper surface detection, negative initial contact force due to tip-tissue moisture interaction, and partial contact between the tip and the sample. In this study, an indirect indentation scheme is proposed to overcome the aforementioned difficulties. In this way, the indentation force is transferred from a sharp tip to the surface of the tissue slices via a rigid coverslip. To demonstrate the accuracy of this method, the linear viscoelastic properties of the white and gray matters of the bovine brain samples are measured by imposing small cyclic loads at different frequencies. The rate, regional, directional, and postmortem time dependence of the viscoelastic moduli are investigated and compared with the previous results from cyclic shear and monotonic experiments on the brain tissue. While findings of this research present a comprehensive set of information for the viscoelastic properties of the brain at a wide frequency range, the central goal of this paper is to introduce a novel experimentation technique with noticeable advantages for biomechanical characterization of the soft tissue
    corecore