350 research outputs found

    A Contingent Valuation Study of Lost Passive Use Values Resulting From the Exxon Valdez Oil Spill

    Get PDF
    We report on the results of a large-scale contingent valuation (CV) study conducted after the Exxon Valdez oil spill to assess the harm caused by it. Among the issues considered are the design features of the CV survey, its administration to a national sample of U.S. households, estimation of household willingness to pay to prevent another Exxon Valdez type oil spill, and issues related to reliability and validity of the estimates obtained. Events influenced by the study’s release are also briefly discussed.contingent valuation, natural resource damage assessment

    Hypnosis and superficial cervical anesthesia for total thyroidectomy in a high-risk patient - A case report.

    Get PDF
    Total thyroidectomy can be challenging in high-risk patients. Local cervical anesthesia with sedation is an alternative to general anesthesia. A 33-year old male patient with cyanotic congenital heart disease due to unrepaired tricuspid atresia type Ic and associated pulmonary arterial hypertension presented with tachycardic atrial fibrillation and amiodarone-induced thyrotoxicosis resulting in recurrent hemodynamic instability. Because of difficulties controlling the thyrotoxic state, the indication for total thyroidectomy was established. Total thyroidectomy was subsequently performed using local anesthesia combined using a hypnosis-analgesia technique instead of intravenous sedation. The intervention and the post-operative course were uneventful. A well-established therapist-patient relationship is crucial for a successful induction of hypnosis. Patient motivation and expectations are equally important for a successful implementation of this approach. We conclude that hypnosis combined with local anesthesia provides an effective alternative in selected patients with very high anesthesiological risk

    Quantum Interference of Coulomb Interaction and Disorder: Phase Shift of Friedel Oscillations and an Instability of the Fermi Sea

    Full text link
    We investigate the influence of interference between Coulomb interaction and impurity scattering on the static electronic response χ(0,q)\chi (0,q) in disordered metals to leading order in the effective Coulomb interaction. When the transport relaxation time τtr\tau _{tr} is much shorter than the quasiparticle life time, we find a \mbox{sgn}(2p_F-q)/\sqrt{|2p_F-q|} divergence of the polarization function at the Fermi surface (q=2pFq=2p_F). It causes a phase shift of the Friedel oscillations as well as an enhancement of their amplitude. Our results are consistent with experiments and may be relevant for understanding the stability of the amorphous state of certain alloys against crystallization.Comment: 11 pages, 4 PostScript figures appended as a self-extracting tar archive; includes output instruction

    Papillary Thyroid Carcinoma with Desmoid-Type Fibromatosis: Review of Published Cases.

    Get PDF
    Desmoid-type fibromatosis (DTF) is a very rare variant of papillary thyroid carcinoma (PTC). It is essentially a dual tumor with a component of classical PTC with malignant epithelial proliferation (BRAF-mutated) and another component of mesenchymal proliferation (CTNNB1-mutated). We conducted a literature review on PTC-DTF. In total, 31 articles were identified, that together reported on 54 patients. The mean age was 47 years, with a 2.2:1 female predominance. No ultrasound features were found to be helpful in differentiating PTC-DTF from other PTC variants. Of the 43 cases that reported histological details, 60% had locally infiltrative disease (T3b or T4). Around 48% had cervical lymph node metastases, but none had distant metastases. While PTC-DTF may be locally more aggressive than classic PTC, its overall behavior is similar and can include extrathyroidal extension and lymph node metastases, which may contain a stromal component and show extranodal invasion. The mainstay of treatment for PTC-DTF is surgery, and the DTF component is not expected to be sensitive to radioactive iodine. External radiotherapy, non-steroidal anti-inflammatory drugs, tyrosine kinase inhibitors and chemotherapy have also been used in selected cases. Due to the rarity of these tumors and the lack of specific treatment guidelines, management should be discussed in a multidisciplinary team

    A Contingent Valuation Study of Lost Passive Use Values Resulting From the Exxon Valdez Oil Spill

    Get PDF
    We report on the results of a large-scale contingent valuation (CV) study conducted after the Exxon Valdez oil spill to assess the harm caused by it. Among the issues considered are the design features of the CV survey, its administration to a national sample of U.S. households, estimation of household willingness to pay to prevent another Exxon Valdez type oil spill, and issues related to reliability and validity of the estimates obtained. Events influenced by the study’s release are also briefly discussed

    High-Energy Aspects of Solar Flares: Overview of the Volume

    Full text link
    In this introductory chapter, we provide a brief summary of the successes and remaining challenges in understanding the solar flare phenomenon and its attendant implications for particle acceleration mechanisms in astrophysical plasmas. We also provide a brief overview of the contents of the other chapters in this volume, with particular reference to the well-observed flare of 2002 July 23Comment: This is the introductory article for a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    A Statistical Study on the Morphology of Rays and Dynamics of Blobs in the Wake of Coronal Mass Ejections

    Full text link
    In this paper, with a survey through the Large Angle and Spectrometric Coronagraph (LASCO) data from 1996 to 2009, we present 11 events with plasma blobs flowing outwards sequentially along a bright coronal ray in the wake of a coronal mass ejection. The ray is believed to be associated with the current sheet structure that formed as a result of solar eruption, and the blobs are products of magnetic reconnection occurring along the current sheet. The ray morphology and blob dynamics are investigated statistically. It is found that the apparent angular widths of the rays at a fixed time vary in a range of 2.1-6.6 (2.0-4.4) degrees with an average of 3.5 (2.9) degrees at 3 (4) Rs, respectively, and the observed durations of the events vary from 12 h to a few days with an average of 27 h. It is also found, based on the analysis of blob motions, that 58% (26) of the blobs were accelerated, 20% (9) were decelerated, and 22% (10) moved with a nearly-constant speed. Comparing the dynamics of our blobs and those that are observed above the tip of a helmet streamer, we find that the speeds and accelerations of the blobs in these two cases differ significantly. It is suggested that these differences of the blob dynamics stem from the associated magnetic reconnection involving different magnetic field configurations and triggering processes.Comment: 12 pages, 6 figures, accepted by Solar Physic

    Fractal Reconnection in Solar and Stellar Environments

    Full text link
    Recent space based observations of the Sun revealed that magnetic reconnection is ubiquitous in the solar atmosphere, ranging from small scale reconnection (observed as nanoflares) to large scale one (observed as long duration flares or giant arcades). Often the magnetic reconnection events are associated with mass ejections or jets, which seem to be closely related to multiple plasmoid ejections from fractal current sheet. The bursty radio and hard X-ray emissions from flares also suggest the fractal reconnection and associated particle acceleration. We shall discuss recent observations and theories related to the plasmoid-induced-reconnection and the fractal reconnection in solar flares, and their implication to reconnection physics and particle acceleration. Recent findings of many superflares on solar type stars that has extended the applicability of the fractal reconnection model of solar flares to much a wider parameter space suitable for stellar flares are also discussed.Comment: Invited chapter to appear in "Magnetic Reconnection: Concepts and Applications", Springer-Verlag, W. D. Gonzalez and E. N. Parker, eds. (2016), 33 pages, 18 figure

    A Quantitative Model of Energy Release and Heating by Time-dependent, Localized Reconnection in a Flare with a Thermal Loop-top X-ray Source

    Full text link
    We present a quantitative model of the magnetic energy stored and then released through magnetic reconnection for a flare on 26 Feb 2004. This flare, well observed by RHESSI and TRACE, shows evidence of non-thermal electrons only for a brief, early phase. Throughout the main period of energy release there is a super-hot (T>30 MK) plasma emitting thermal bremsstrahlung atop the flare loops. Our model describes the heating and compression of such a source by localized, transient magnetic reconnection. It is a three-dimensional generalization of the Petschek model whereby Alfven-speed retraction following reconnection drives supersonic inflows parallel to the field lines, which form shocks heating, compressing, and confining a loop-top plasma plug. The confining inflows provide longer life than a freely-expanding or conductively-cooling plasma of similar size and temperature. Superposition of successive transient episodes of localized reconnection across a current sheet produces an apparently persistent, localized source of high-temperature emission. The temperature of the source decreases smoothly on a time scale consistent with observations, far longer than the cooling time of a single plug. Built from a disordered collection of small plugs, the source need not have the coherent jet-like structure predicted by steady-state reconnection models. This new model predicts temperatures and emission measure consistent with the observations of 26 Feb 2004. Furthermore, the total energy released by the flare is found to be roughly consistent with that predicted by the model. Only a small fraction of the energy released appears in the super-hot source at any one time, but roughly a quarter of the flare energy is thermalized by the reconnection shocks over the course of the flare. All energy is presumed to ultimately appear in the lower-temperature T<20 MK, post-flare loops
    corecore