39 research outputs found

    MIS capacitor studies on silicon carbide single crystals

    Get PDF
    Cubic SIC metal-insulator-semiconductor (MIS) capacitors with thermally grown or chemical-vapor-deposited (CVD) insulators were characterized by capacitance-voltage (C-V), conductance-voltage (G-V), and current-voltage (I-V) measurements. The purpose of these measurements was to determine the four charge densities commonly present in an MIS capacitor (oxide fixed charge, N(f); interface trap level density, D(it); oxide trapped charge, N(ot); and mobile ionic charge, N(m)) and to determine the stability of the device properties with electric-field stress and temperature. The section headings in the report include the following: Capacitance-voltage and conductance-voltage measurements; Current-voltage measurements; Deep-level transient spectroscopy; and Conclusions (Electrical characteristics of SiC MIS capacitors)

    Experimental investigation of interface states and photovoltaic effects on the scanning capacitance microscopy measurement for p-n junction dopant profiling

    Get PDF
    Controlled polishing procedures were used to produce both uniformly doped and p-n junction silicon samples with different interface state densities but identical oxide thicknesses. Using these samples, the effects of interface states on scanning capacitance microscopy (SCM) measurements could be singled out. SCM measurements on the junction samples were performed with and without illumination from the atomic force microscopy laser. Both the interface charges and the illumination were seen to affect the SCM signal near p-n junctions significantly. SCM p-n junction dopant profiling can be achieved by avoiding or correctly modeling these two factors in the experiment and in the simulation. (c) 2005 American Institute of Physics

    Ultrahigh-temperature microwave annealing of Alâș- and Pâș-implanted 4H-SiC

    No full text
    In this work, an ultrafast solid-state microwaveannealing has been performed, in the temperature range of 1700–2120°C on Alâș- and Pâș-implanted 4H-SiC. The solid-state microwave system used in this study is capable of raising the SiC sample temperatures to extremely high values, at heating rates of ∌600°C∕s. The samples were annealed for 5–60s in a pure nitrogen ambient. Atomic force microscopy performed on the annealed samples indicated a smooth surface with a rms roughness of 1.4nm for 5×5ÎŒmÂČ scans even for microwaveannealing at 2050°C for 30s. Auger sputter profiling revealed a <7nm thick surface layer composed primarily of silicon, oxygen, and nitrogen for the samples annealed in N₂, at annealing temperatures up to 2100°C. X-ray photoelectron spectroscopy revealed that this surface layer is mainly composed of silicon oxide and silicon nitride. Secondary ion mass spectrometry depth profiling confirmed almost no dopant in diffusion after microwaveannealing at 2100°C for 15s. However, a sublimation of ∌100nm of the surface SiC layer was observed for 15sannealing at 2100°C. Rutherford backscattering spectra revealed a lattice damage-free SiC material after microwaveannealing at 2050°C for 15s, with scattering yields near the virgin SiC material. Van der Pauw–Hall measurements have revealed sheet resistance values as low as 2.4kÎ©âˆ•â–Ą for Alâș-implanted material annealed at 2100°C for 15s and 14Î©âˆ•â–Ą for the P+-implanted material annealed at 1950°C for 30s. The highest electron and hole mobilities measured in this work were 100 and 6.8cm2/Vs, respectively, for the Pâș- and Alâș-implanted materials.The GMU work is supported by Army Research Of- fice Dr. Prater under Grant No. W911NF-04-1-0428 and a subcontract from LT Technologies under NSF SBIR Grant No. 0539321

    Rapid and Accurate C-V Measurements

    Get PDF
    We report a new technique for the rapid measurement of full capacitance-voltage (C-V) characteristic curves. The displacement current from a 100-MHz applied sine wave, which swings from accumulation to strong inversion, is digitized directly using an oscilloscope from the MOS capacitor under test. A C-V curve can be constructed directly from this data but is severely distorted due to nonideal behavior of real measurement systems. The key advance of this paper is to extract the system response function using the same measurement setup and a known MOS capacitor. The system response correction to the measured C-V curve of the unknown MOS capacitor can then be done by simple deconvolution. No deskewing and/or leakage current correction is necessary, making it a very simple and quick measurement. Excellent agreement between the new fast C-V method and C-V measured conventionally by an LCR meter is achieved. The total time required for measurement and analysis is approximately 2 s, which is limited by our equipment

    Memory properties and charge effect study in Si nanocrystals by scanning capacitance microscopy and spectroscopy

    Get PDF
    In this letter, isolated Si nanocrystal has been formed by dewetting process with a thin silicon dioxide layer on top. Scanning capacitance microscopy and spectroscopy were used to study the memory properties and charge effect in the Si nanocrystal in ambient temperature. The retention time of trapped charges injected by different direct current (DC) bias were evaluated and compared. By ramp process, strong hysteresis window was observed. The DC spectra curve shift direction and distance was observed differently for quantitative measurements. Holes or electrons can be separately injected into these Si-ncs and the capacitance changes caused by these trapped charges can be easily detected by scanning capacitance microscopy/spectroscopy at the nanometer scale. This study is very useful for nanocrystal charge trap memory application
    corecore