10 research outputs found

    Incorporation of high-dose 131I-metaiodobenzylguanidine treatment into tandem high-dose chemotherapy and autologous stem cell transplantation for high-risk neuroblastoma: results of the SMC NB-2009 study

    No full text
    Abstract Background In our previous SMC NB-2004 study of patients with high-risk neuroblastomas, which incorporated total-body irradiation (TBI) with second high-dose chemotherapy and autologous stem cell transplantation (HDCT/auto-SCT), the survival rate was encouraging; however, short- and long-term toxicities were significant. In the present SMC NB-2009 study, only TBI was replaced with 131I-meta-iodobenzylguanidine (MIBG) treatment in order to reduce toxicities. Methods From January 2009 to December 2013, 54 consecutive patients were assigned to receive tandem HDCT/auto-SCT after nine cycles of induction chemotherapy. The CEC (carboplatin + etoposide + cyclophosphamide) regimen and the TM (thiotepa + melphalan) regimen with (for metastatic MIBG avid tumors) or without (for localized or MIBG non-avid tumors) 131I-MIBG treatment (18 or 12 mCi/kg) were used for tandem HDCT/auto-SCT. Local radiotherapy, differentiation therapy with 13-cis-retinoic acid, and immunotherapy with interleukin-2 were administered after tandem HDCT/auto-SCT. Results Fifty-two patients underwent the first HDCT/auto-SCT and 47 patients completed tandem HDCT/auto-SCT. There was no significant immediate toxicity during the 131I-MIBG infusion. Acute toxicities during the tandem HDCT/auto-SCT were less severe in the NB-2009 study than in the NB-2004 study. Late effects such as growth hormone deficiency, cataracts, and glomerulopathy evaluated at 3 years after the second HDCT/auto-SCT were also less significant in the NB-2009 study than in NB-2004 study. There was no difference in the 5-year event-free survival (EFS) between the two studies (67.5 ± 6.7% versus 58.3 ± 6.9%, P = 0.340). Conclusions Incorporation of high-dose 131I-MIBG treatment into tandem HDCT/auto-SCT could reduce short- and long-term toxicities associated with TBI, without jeopardizing the survival rate. Trial registration ClinicalTrials.gov NCT0306165

    Safety and immune cell kinetics after donor natural killer cell infusion following haploidentical stem cell transplantation in children with recurrent neuroblastoma.

    No full text
    INTRODUCTION:Under the hypothesis that early natural killer cell infusion (NKI) following haploidentical stem cell transplantation (haplo-SCT) will reduce relapse in the early post-transplant period, we conducted a pilot study to evaluate the safety and feasibility of NKI following haplo-SCT in children with recurrent neuroblastoma who failed previous tandem high-dose chemotherapy and autologous SCT. METHODS:We used the high-dose 131I-metaiodobenzylguanidine and cyclophosphamide/fludarabine/anti-thymocyte globulin regimen for conditioning and infused 3 × 107/kg of ex-vivo expanded NK cells derived from a haploidentical parent donor on days 2, 9, and 16 post-transplant. Interleukin-2 was administered (1 × 106 IU/m2/day) subcutaneously to activate infused donor NK cells on days 2, 4, 6, 9, 11, 13, 16, 18, and 20 post-transplant. RESULTS:Seven children received a total of 19 NKIs, and NKI-related acute toxicities were fever (n = 4) followed by chills (n = 3) and hypertension (n = 3); all toxicities were tolerable. Grade ≥II acute GVHD and chronic GVHD developed in two and five patients, respectively. Higher amount of NK cell population was detected in peripheral blood until 60 days post-transplant than that in the reference cohort. Cytomegalovirus and BK virus reactivation occurred in all patients and Epstein-Barr virus in six patients. Six patients died of relapse/progression (n = 5) or treatment-related mortality (n = 1), and one patient remained alive. CONCLUSION:NKI following haplo-SCT was relatively safe and feasible in patients with recurrent neuroblastoma. Further studies to enhance the graft-versus-tumor effect without increasing GVHD are needed
    corecore