16 research outputs found
Au-SN Flip-Chip Solder Bump for Microelectronic and Optoelectronic Applications
As an alternative to the time-consuming solder pre-forms and pastes currently
used, a co-electroplating method of eutectic Au-Sn alloy was used in this
study. Using a co-electroplating process, it was possible to plate the Au-Sn
solder directly onto a wafer at or near the eutectic composition from a single
solution. Two distinct phases, Au5Sn and AuSn, were deposited at a composition
of 30at.%Sn. The Au-Sn flip-chip joints were formed at 300 and 400 degrees
without using any flux. In the case where the samples were reflowed at 300
degrees, only an (Au,Ni)3Sn2 IMC layer formed at the interface between the
Au-Sn solder and Ni UBM. On the other hand, two IMC layers, (Au,Ni)3Sn2 and
(Au,Ni)3Sn, were found at the interfaces of the samples reflowed at 400
degrees. As the reflow time increased, the thickness of the (Au,Ni)3Sn2 and
(Au,Ni)3Sn IMC layers formed at the interface increased and the eutectic
lamellae in the bulk solder coarsened.Comment: Submitted on behalf of TIMA Editions
(http://irevues.inist.fr/tima-editions
Network Clustering Revealed the Systemic Alterations of Mitochondrial Protein Expression
The mitochondrial protein repertoire varies depending on the cellular state. Protein component modifications caused by mitochondrial DNA (mtDNA) depletion are related to a wide range of human diseases; however, little is known about how nuclear-encoded mitochondrial proteins (mt proteome) changes under such dysfunctional states. In this study, we investigated the systemic alterations of mtDNA-depleted (ρ0) mitochondria by using network analysis of gene expression data. By modularizing the quantified proteomics data into protein functional networks, systemic properties of mitochondrial dysfunction were analyzed. We discovered that up-regulated and down-regulated proteins were organized into two predominant subnetworks that exhibited distinct biological processes. The down-regulated network modules are involved in typical mitochondrial functions, while up-regulated proteins are responsible for mtDNA repair and regulation of mt protein expression and transport. Furthermore, comparisons of proteome and transcriptome data revealed that ρ0 cells attempted to compensate for mtDNA depletion by modulating the coordinated expression/transport of mt proteins. Our results demonstrate that mt protein composition changed to remodel the functional organization of mitochondrial protein networks in response to dysfunctional cellular states. Human mt protein functional networks provide a framework for understanding how cells respond to mitochondrial dysfunctions
Recommended from our members
Pharmacogenomic analysis of patient-derived tumor cells in gynecologic cancers
Background
Gynecologic malignancy is one of the leading causes of mortality in female adults worldwide. Comprehensive genomic analysis has revealed a list of molecular aberrations that are essential to tumorigenesis, progression, and metastasis of gynecologic tumors. However, targeting such alterations has frequently led to treatment failures due to underlying genomic complexity and simultaneous activation of various tumor cell survival pathway molecules. A compilation of molecular characterization of tumors with pharmacological drug response is the next step toward clinical application of patient-tailored treatment regimens.
Results
Toward this goal, we establish a library of 139 gynecologic tumors including epithelial ovarian cancers (EOCs), cervical, endometrial tumors, and uterine sarcomas that are genomically and/or pharmacologically annotated and explore dynamic pharmacogenomic associations against 37 molecularly targeted drugs. We discover lineage-specific drug sensitivities based on subcategorization of gynecologic tumors and identify TP53 mutation as a molecular determinant that elicits therapeutic response to poly (ADP-Ribose) polymerase (PARP) inhibitor. We further identify transcriptome expression of inhibitor of DNA biding 2 (ID2) as a potential predictive biomarker for treatment response to olaparib.
Conclusions
Together, our results demonstrate the potential utility of rapid drug screening combined with genomic profiling for precision treatment of gynecologic cancers
New Era of Air Quality Monitoring from Space: Geostationary Environment Monitoring Spectrometer (GEMS)
GEMS will monitor air quality over Asia at unprecedented spatial and temporal resolution from GEO for the first time, providing column measurements of aerosol, ozone and their precursors (nitrogen dioxide, sulfur dioxide and formaldehyde).
Geostationary Environment Monitoring Spectrometer (GEMS) is scheduled for launch in late 2019 - early 2020 to monitor Air Quality (AQ) at an unprecedented spatial and temporal resolution from a Geostationary Earth Orbit (GEO) for the first time. With the development of UV-visible spectrometers at sub-nm spectral resolution and sophisticated retrieval algorithms, estimates of the column amounts of atmospheric pollutants (O3, NO2, SO2, HCHO, CHOCHO and aerosols) can be obtained. To date, all the UV-visible satellite missions monitoring air quality have been in Low Earth orbit (LEO), allowing one to two observations per day. With UV-visible instruments on GEO platforms, the diurnal variations of these pollutants can now be determined. Details of the GEMS mission are presented, including instrumentation, scientific algorithms, predicted performance, and applications for air quality forecasts through data assimilation. GEMS will be onboard the GEO-KOMPSAT-2 satellite series, which also hosts the Advanced Meteorological Imager (AMI) and Geostationary Ocean Color Imager (GOCI)-2. These three instruments will provide synergistic science products to better understand air quality, meteorology, the long-range transport of air pollutants, emission source distributions, and chemical processes. Faster sampling rates at higher spatial resolution will increase the probability of finding cloud-free pixels, leading to more observations of aerosols and trace gases than is possible from LEO. GEMS will be joined by NASA's TEMPO and ESA's Sentinel-4 to form a GEO AQ satellite constellation in early 2020s, coordinated by the Committee on Earth Observation Satellites (CEOS)
Effect of surface finish of substrate on mechanical reliability of IN-48SN solder joints in MOEMS package
Interfacial reactions and shear properties of the In-48Sn (in wt.%) ball grid array (BGA) solder joints after bonding were investigated with four different surface finishes of the substrate over an underlying Cu pad : electroplated Ni/Au (hereafter E-NG), electroless Ni/immersion Au (hereafter ENIG), immersion Ag (hereafter I-Ag) and organic solderability preservative (hereafter OSP). During bonding, continuous AuIn2, Ni3(Sn,In)4 and Cu6(Sn,In)5 intermetallic compound (IMC) layers were formed at the solder/E-NG, solder/ENIG and solder/OSP interface, respectively. The interfacial reactions between the solder and I-Ag substrate during bonding resulted in the formation of Cu6(Sn,In)5 and Cu(Sn,In)2 IMCs with a minor Ag element. The In-48Sn/I-Ag solder joint showed the best shear properties among the four solder joints after bonding, whereas the solder/ENIG solder joint exhibited the weakest mechanical integrity