434 research outputs found
Different DNA extraction methods can cause different AFLP profiles in grapevine (Vitis vinifera L.)
Amplified fragment length polymorphism (AFLP) is widely used for DNA fingerprinting and it has been broadly applied in population genetics. Since it is based on restriction digestion and PCR-based amplification it can be influenced by different chemical compounds commonly found in the isolated DNA. DNA extraction procedures may alter the AFLP banding profiles through DNA quality. Hence the DNA extraction method is crucial to produce reproducible AFLP-banding profiles.In this work two sets of AFLP analyses were performed on 62 Pinot noir, 6 Pinot blanc and 4 Pinot gris (Vitis vinifera L.) clones, and profiles obtained after three different DNA extraction methods were compared. AFLP profiles were different for the same genotypes due to the DNA extraction method used.
Explorer 45 (S 3-A) observations of the magnetosphere and magnetopause during the 4-5 August 1972, magnetic storm period
The Explorer 45 satellite performed extensive field and particle measurements in the heart of the magnetosphere during the double magnetic storm period of August 4-5, 1972. Both ground level magnetic records and the magnetic field deformations measured along the orbit by the satellite indicated the existence of only a moderate ring current. This was confirmed by the measurements of the total proton energy density less than those observed during the December 1971 and June 1972 magnetic storms. The plasmapause in the noon quadrant was eroded continuously from the onset of the first storm at the beginning of August 4 to an altitude below L = 2.07 at about 18 hours on August 5. During the orbit containing the second sudden commencement a large amount of low frequency electric and magnetic field noise was encountered throughout the entire orbit. A noteworthy observation during this orbit was the contraction of the magnetopause to distances inside the satellite at L = 5.2
Toward a descriptive model of solar particles in the heliosphere
During a workshop on the interplanetary charged particle environment held in 1987, a descriptive model of solar particles in the heliosphere was assembled. This model includes the fluence, composition, energy spectra, and spatial and temporal variations of solar particles both within and beyong 1 AU. The ability to predict solar particle fluences was also discussed. Suggestions for specific studies designed to improve the basic model were also made
Transport of small anionic and neutral solutes through chitosan membranes: Dependence on cross-linking and chelation of divalent cations
Chitosan membranes were prepared by solvent casting and cross-linked with glutaraldehyde at several ratios
under homogeneous conditions. The cross-linking degree, varying from 0 to 20%, is defined as the ratio between
the total aldehyde groups and the amine groups of chitosan. Permeability experiments were conducted using a
side-by-side diffusion cell to determine the flux of small molecules of similar size but with different chemical
moieties, either ionized (benzoic acid, salicylic acid, and phthalic acid) or neutral (2-phenylethanol) at physiological
pH. The permeability of the different model molecules revealed to be dependent on the affinity of those structurally
similar molecules to chitosan. The permeability of the salicylate anion was significantly enhanced by the presence
of metal cations commonly present in biological fluids, such as calcium and magnesium, but remained unchanged
for the neutral 2-phenylethanol. This effect could be explained by the chelation of metal cations on the amine
groups of chitosan, which increased the partition coefficient. The cross-linking degree was also correlated with
the permeability and partition coefficient. The change in the permeation properties of chitosan to anionic solutes
in the presence of these metallic cations is an important result and should be taken into consideration when trying
to make in vitro predictions of the drug release from chitosan-based controlled release systems
Kainate Receptor-Mediated Modulation of Hippocampal Fast Spiking Interneurons in a Rat Model of Schizophrenia
Kainate receptor (KAR) subunits are believed to be involved in abnormal GABAergic neurotransmission in the hippocampus (HIPP) in schizophrenia (SZ) and bipolar disorder. Postmortem studies have shown changes in the expression of the GluR5/6 subunits of KARs in the stratum oriens (SO) of sectors CA2/3, where the basolateral amygdala (BLA) sends a robust projection. Previous work using a rat model of SZ demonstrated that BLA activation leads to electrophysiological changes in fast-spiking interneurons in SO of CA2/3. The present study explores KAR modulation of interneurons in CA2/3 in response to BLA activation. Intrinsic firing properties of these interneurons through KAR-mediated activity were measured with patch-clamp recordings from rats that received 15 days of picrotoxin infusion into the BLA. Chronic BLA activation induced changes in the firing properties of CA2/3 interneurons associated with modifications in the function of KARs. Specifically, the responsiveness of these interneurons to activation of KARs was diminished in picrotoxin-treated rats, while the after-hyperpolarization (AHP) amplitude was increased. In addition, we tested blockers of KAR subunits which have been shown to have altered gene expression in SO sector CA2/3 of SZ subjects. The GluR5 antagonist UBP296 further decreased AP frequency and increased AHP amplitude in picrotoxin-treated rats. Application of the GluR6/7 antagonist NS102 suggested that activation of GluR6/7 KARs may be required to maintain the high firing rates in SO interneurons in the presence of KA. Moreover, the GluR6/7 KAR-mediated signaling may be suppressed in PICRO-treated rats. Our findings indicate that glutamatergic activity from the BLA may modulate the firing properties of CA2/3 interneurons through GluR5 and GluR6/7 KARs. These receptors are expressed in GABAergic interneurons and play a key role in the synchronization of gamma oscillations. Modulation of interneuronal activity through KARs in response to amygdala activation may lead to abnormal oscillatory rhythms reported in SZ subjects
Effects of Metabotropic Glutamate Receptor 3 Genotype on Phonetic Mismatch Negativity
BACKGROUND: The genetic and molecular basis of glutamatergic dysfunction is one key to understand schizophrenia, with the identification of an intermediate phenotype being an essential step. Mismatch negativity (MMN) or its magnetic counterpart, magnetic mismatch field (MMF) is an index of preattentive change detection processes in the auditory cortex and is generated through glutamatergic neurotransmission. We have previously shown that MMN/MMF in response to phoneme change is markedly reduced in schizophrenia. Variations in metabotropic glutamate receptor (GRM3) may be associated with schizophrenia, and has been shown to affect cortical function. Here we investigated the effect of GRM3 genotypes on phonetic MMF in healthy men. METHODS: MMF in response to phoneme change was recorded using magnetoencephalography in 41 right-handed healthy Japanese men. Based on previous genetic association studies in schizophrenia, 4 candidate SNPs (rs6465084, rs2299225, rs1468412, rs274622) were genotyped. RESULTS: GRM3 rs274622 genotype variations significantly predicted MMF strengths (p = 0.009), with C carriers exhibiting significantly larger MMF strengths in both hemispheres compared to the TT subjects. CONCLUSIONS: These results suggest that variations in GRM3 genotype modulate the auditory cortical response to phoneme change in humans. MMN/MMF, particularly those in response to speech sounds, may be a promising and sensitive intermediate phenotype for clarifying glutamatergic dysfunction in schizophrenia
Reduced Myelin Basic Protein and Actin-Related Gene Expression in Visual Cortex in Schizophrenia
Most brain gene expression studies of schizophrenia have been conducted in the frontal cortex or hippocampus. The extent to which alterations occur in other cortical regions is not well established. We investigated primary visual cortex (Brodmann area 17) from the Stanley Neuropathology Consortium collection of tissue from 60 subjects with schizophrenia, bipolar disorder, major depression, or controls. We first carried out a preliminary array screen of pooled RNA, and then used RT-PCR to quantify five mRNAs which the array identified as differentially expressed in schizophrenia (myelin basic protein [MBP], myelin-oligodendrocyte glycoprotein [MOG], β-actin [ACTB], thymosin β-10 [TB10], and superior cervical ganglion-10 [SCG10]). Reduced mRNA levels were confirmed by RT-PCR for MBP, ACTB and TB10. The MBP reduction was limited to transcripts containing exon 2. ACTB and TB10 mRNAs were also decreased in bipolar disorder. None of the transcripts were altered in subjects with major depression. Reduced MBP mRNA in schizophrenia replicates findings in other brain regions and is consistent with oligodendrocyte involvement in the disorder. The decreases in expression of ACTB, and the actin-binding protein gene TB10, suggest changes in cytoskeletal organisation. The findings confirm that the primary visual cortex shows molecular alterations in schizophrenia and extend the evidence for a widespread, rather than focal, cortical pathophysiology
MASked-unconTrolled hypERtension management based on office BP or on ambulatory blood pressure measurement (MASTER) Study: a randomised controlled trial protocol.
Masked uncontrolled hypertension (MUCH) carries an increased risk of cardiovascular (CV) complications and can be identified through combined use of office (O) and ambulatory (A) blood pressure (BP) monitoring (M) in treated patients. However, it is still debated whether the information carried by ABPM should be considered for MUCH management. Aim of the MASked-unconTrolled hypERtension management based on OBP or on ambulatory blood pressure measurement (MASTER) Study is to assess the impact on outcome of MUCH management based on OBPM or ABPM
Differential Patterns of Synaptotagmin7 mRNA Expression in Rats with Kainate- and Pilocarpine-Induced Seizures
Previous studies in rat models of neurodegenerative disorders have shown disregulation of striatal synaptotagmin7 mRNA. Here we explored the expression of synaptotagmin7 mRNA in the brains of rats with seizures triggered by the glutamatergic agonist kainate (10 mg/kg) or by the muscarinic agonist pilocarpine (30 mg/kg) in LiCl (3 mEq/kg) pre-treated (24 h) rats, in a time-course experiment (30 min - 1 day). After kainate-induced seizures, synaptotagmin7 mRNA levels were transiently and uniformly increased throughout the dorsal and ventral striatum (accumbens) at 8 and 12 h, but not at 24 h, followed at 24 h by somewhat variable upregulation within different parts of the cerebral cortex, amigdala and thalamic nuclei, the hippocampus and the lateral septum. By contrast, after LiCl/pilocarpine-induced seizures, there was a more prolonged increase of striatal Synaptotagmin7 mRNA levels (at 8, 12 and 24 h), but only in the ventromedial striatum, while in some other of the aforementioned brain regions there was a decline to below the basal levels. After systemic post-treatment with muscarinic antagonist scopolamine in a dose of 2 mg/kg the seizures were either extinguished or attenuated. In scopolamine post-treated animals with extinguished seizures the striatal synaptotagmin7 mRNA levels (at 12 h after the onset of seizures) were not different from the levels in control animals without seizures, while in rats with attenuated seizures, the upregulation closely resembled kainate seizures-like pattern of striatal upregulation. In the dose of 1 mg/kg, scopolamine did not significantly affect the progression of pilocarpine-induced seizures or pilocarpine seizures-like pattern of striatal upregulation of synaptotagmin7 mRNA. In control experiments, equivalent doses of scopolamine per se did not affect the expression of synaptotagmin7 mRNA. We conclude that here described differential time course and pattern of synaptotagmin7 mRNA expression imply regional differences of pathophysiological brain activation and plasticity in these two models of seizures
Thin Polymer Brush Decouples Biomaterial's Micro-/Nano-Topology and Stem Cell Adhesion
Surface morphology and chemistry of polymers used as biomaterials, such as tissue engineering scaffolds, have a strong influence on the adhesion and behavior of human mesenchymal stem cells. Here we studied semicrystalline poly(ε-caprolactone) (PCL) substrate scaffolds, which exhibited a variation of surface morphologies and roughness originating from different spherulitic superstructures. Different substrates were obtained by varying the parameters of the thermal processing, i.e. crystallization conditions. The cells attached to these polymer substrates adopted different morphologies responding to variations in spherulite density and size. In order to decouple substrate topology effects on the cells, sub-100 nm bio-adhesive polymer brush coatings of oligo(ethylene glycol) methacrylates were grafted from PCL and functionalized with fibronectin. On surfaces featuring different surface textures, dense and sub-100 nm thick brush coatings determined the response of cells, irrespective to the underlying topology. Thus, polymer brushes decouple substrate micro-/nano-topology and the adhesion of stem cells
- …