6,304 research outputs found
Maintaining Quantum Coherence in the Presence of Noise through State Monitoring
Unsharp POVM measurements allow the estimation and tracking of quantum
wavefunctions in real-time with minimal disruption of the dynamics. Here we
demonstrate that high fidelity state monitoring, and hence quantum control, is
possible even in the presence of classical dephasing and amplitude noise, by
simulating such measurements on a two-level system undergoing Rabi
oscillations. Finite estimation fidelity is found to persist indefinitely long
after the decoherence times set by the noise fields in the absence of
measurement.Comment: 5 pages, 4 figure
Experimental demonstration of entanglement-enhanced classical communication over a quantum channel with correlated noise
We present an experiment demonstrating entanglement-enhanced classical
communication capacity of a quantum channel with correlated noise. The channel
is modelled by a fiber optic link exhibiting random birefringence that
fluctuates on a time scale much longer than the temporal separation between
consecutive uses of the channel. In this setting, introducing entanglement
between two photons travelling down the fiber allows one to encode reliably up
to one bit of information into their joint polarization degree of freedom. When
no quantum correlations between two separate uses of the channel are allowed,
this capacity is reduced by a factor of more than three. We demonstrated this
effect using a fiber-coupled source of entagled photon pairs based on
spontaneous parametric down-conversion, and a linear-optics Bell state
measurement.Comment: 4 pages, 2 figures, REVTe
Statistical uncertainty in quantum optical photodetection measurements
We present a complete statistical analysis of quantum optical measurement
schemes based on photodetection. Statistical distributions of quantum
observables determined from a finite number of experimental runs are
characterized with the help of the generating function, which we derive using
the exact statistical description of raw experimental outcomes. We use the
developed formalism to point out that the statistical uncertainty results in
substantial limitations of the determined information on the quantum state:
though a family of observables characterizing the quantum state can be safely
evaluated from experimental data, its further use to obtain the expectation
value of some operators generates exploding statistical errors. These issues
are discussed using the example of phase-insensitive measurements of a single
light mode. We study reconstruction of the photon number distribution from
photon counting and random phase homodyne detection. We show that utilization
of the reconstructed distribution to evaluate a simple well-behaved observable,
namely the parity operator, encounters difficulties due to accumulation of
statistical errors. As the parity operator yields the Wigner function at the
phase space origin, this example also demonstrates that transformation between
various experimentally determined representations of the quantum state is a
quite delicate matter.Comment: 18 pages REVTeX, 7 figures included using epsf. Few minor corrections
made, clarified conclusion
Cinderella Strings
We investigate recent claims concerning a new class of cosmic string
solutions in the Weinberg-Salam model. They have the general form of previously
discussed semi-local and electroweak strings, but are modified by the presence
of a non-zero W-condensate in the core of the string. We explicitly construct
such solutions for arbitrary values of the winding number . We then prove
that they are gauge equivalent to bare electroweak strings with winding number
. We also develop new asymptotic expressions for large- strings.Comment: 11 pages, harvmac (b) and epsf (2 figures uuencoded
Maximum likelihood estimation of photon number distribution from homodyne statistics
We present a method for reconstructing the photon number distribution from
the homodyne statistics based on maximization of the likelihood function
derived from the exact statistical description of a homodyne experiment. This
method incorporates in a natural way the physical constraints on the
reconstructed quantities, and the compensation for the nonunit detection
efficiency.Comment: 3 pages REVTeX. Final version, to appear in Phys. Rev. A as a Brief
Repor
The EPICS Software Framework Moves from Controls to Physics
The Experimental Physics and Industrial Control System (EPICS), is an open-source software framework for high-performance distributed control, and is at the heart of many of the world’s large accelerators and telescopes. Recently, EPICS has undergone a major revision, with the aim of better computing supporting for the next generation of machines and analytical tools. Many new data types, such as matrices, tables, images, and statistical descriptions, plus users’ own data types, now supplement the simple scalar and waveform types of the former EPICS. New computational architectures for scientific computing have been added for high-performance data processing services and pipelining. Python and Java bindings have enabled powerful new user interfaces. The result has been that controls are now being integrated with modelling and simulation, machine learning, enterprise databases, and experiment DAQs. We introduce this new EPICS (version 7) from the perspective of accelerator physics and review early adoption cases in accelerators around the world
Determination of the Weak Axial Vector Coupling from a Measurement of the Beta-Asymmetry Parameter A in Neutron Beta Decay
We report on a new measurement of the neutron beta-asymmetry parameter
with the instrument \perkeo. Main advancements are the high neutron
polarization of from a novel arrangement of super mirror
polarizers and reduced background from improvements in beam line and shielding.
Leading corrections were thus reduced by a factor of 4, pushing them below the
level of statistical error and resulting in a significant reduction of
systematic uncertainty compared to our previous experiments. From the result
, we derive the ratio of the axial-vector to the vector
coupling constant Comment: 5 pages, 4 figure
On Estimation of Fully Entangled Fraction
We study the fully entangled fraction (FEF) of arbitrary mixed states. New
upper bounds of FEF are derived. These upper bounds make complements on the
estimation of the value of FEF. For weakly mixed quantum states, an upper bound
is shown to be very tight to the exact value of FEF.Comment: 8 pages, 2 figure
Altimetry, gravimetry, GPS and viscoelastic modeling data for the joint inversion for glacial isostatic adjustment in Antarctica (ESA STSE Project REGINA)
The poorly known correction for the ongoing deformation of the solid Earth caused by glacial isostatic adjustment (GIA) is a major uncertainty in determining the mass balance of the Antarctic ice sheet from measurements of satellite gravimetry and to a lesser extent satellite altimetry. In the past decade, much progress has been made in consistently modeling ice sheet and solid Earth interactions; however, forward-modeling solutions of GIA in Antarctica remain uncertain due to the sparsity of constraints on the ice sheet evolution, as well as the Earth's rheological properties. An alternative approach towards estimating GIA is the joint inversion of multiple satellite data – namely, satellite gravimetry, satellite altimetry and GPS, which reflect, with different sensitivities, trends in recent glacial changes and GIA. Crucial to the success of this approach is the accuracy of the space-geodetic data sets. Here, we present reprocessed rates of surface-ice elevation change (Envisat/Ice, Cloud,and land Elevation Satellite, ICESat; 2003–2009), gravity field change (Gravity Recovery and Climate Experiment, GRACE; 2003–2009) and bedrock uplift (GPS; 1995–2013). The data analysis is complemented by the forward modeling of viscoelastic response functions to disc load forcing, allowing us to relate GIA-induced surface displacements with gravity changes for different rheological parameters of the solid Earth. The data and modeling results presented here are available in the PANGAEA database (https://doi.org/10.1594/PANGAEA.875745). The data sets are the input streams for the joint inversion estimate of present-day ice-mass change and GIA, focusing on Antarctica. However, the methods, code and data provided in this paper can be used to solve other problems, such as volume balances of the Antarctic ice sheet, or can be applied to other geographical regions in the case of the viscoelastic response functions. This paper presents the first of two contributions summarizing the work carried out within a European Space Agency funded study: Regional glacial isostatic adjustment and CryoSat elevation rate corrections in Antarctica (REGINA)
Genetic diversity of Parkia biglobosa (African locust bean) and its implications for conservation strategies
Parkia biglobosa is an African Savannah tree with a wide range from Senegal to Uganda between the latitudes 5 and 15° in the North of equator. It is well-known as an agroforestry tree but also as a medicinal and food tree. Seeds, barks, roots, leaves and flowers are used to treat more than 80 diseases and complaints while fermented seeds and pulp of fruits have highly nutritional and commercial values.
Understanding the level and distribution of genetic diversity of a widespread species such P. biglobosa is crucial for its conservation and sustainable utilisation. The genetic diversity and population structure were investigated using height nuclear microsatellites developed for the species. The sampling included 84 populations from twelve countries in West and Central Africa. The height microsatellite loci were highly polymorphic and did not show evidence of null alleles. A total of 217 alleles were revealed among the 1,610 genotypes of P. biglobosa. The number of alleles per locus was ranged from 17 to 50 with an average of 27 alleles per locus. The estimates of genetic diversity were moderate for the populations of extreme West Africa and Central Africa and were high to populations in the centre of West Africa. Individual-based assignment using admixture model with correlated allele frequencies revealed strong genetically structured populations across P. biglobosa range in West and Central Africa. The clustering analysis showed five most plausible subpopulations for the biogeographic study in West and Central Africa. Analysis of molecular variance partitioned the molecular variation 9.10% among groups, 2.71% among populations within groups and 88.19% within populations. Overall, the genetic differentiation among populations was moderate (FST=0.118; P<0.001). In regard to the distribution of intraspecific diversity, we also discussed the implications for conservation and sustainable use of the species
- …
